
Fun Stuff
BookStack Jail
Website Jail
Caddy Jail

BookStack Jail
Prerequisites
Have a jail called bs_jail
We already created a handful at once. Let's look (at the relevant output).

Initial Prep
You might as well make sure you have your custom .cshrc in the jail (see custom_cshrc.sh saved in
/usr/local/scripts), and maybe run tzsetup as well.

Install some initial necessary packages.

Advanced Prep (nullfs)
(Relocate database outside the jail)
If we ever have a problem with this jail and need to blow it away, it would be nice for the database
to live on. We can do this! In fact, this is probably one of several steps that could/should be taken
to ensure data not specific to the jail is saved outside the jail.

First, let's create a directory for it the db to live. You can mkdir -p this step. I have ZFS and
/zroot/data already, so it'll be:

[root@freebsd:~]# bastille list
 JID IP Address Hostname Path
 bs_jail 10.101.10.110 bs_jail /usr/local/bastille/jails/bs_jail/root

(Most everything below is performed outside the jail.)

bastille pkg bs_jail install -y vim-console git sudo bash

MariaDB (MySQL) stores the database in /var/db/mysql . In fact, it probably would store multiple
databases in there if we were using it for something else in the jail. Luckily, we're not. So there's
our directory where we'll mount the new directory.

In order to get a /var/db/mysql in the first place, mysql needs to be installed, so we'll do that now.

The user and group that own the BookStack db are both 88 (which is the mysql user and group,
which you can see in the stdout from the previous command). We've gotta match that, and the
permissions.

Next double check that the folder /var/db/mysql exists. It should. If it does, proceed with:

Now it's time to set up the fstab . In the case of bastille, it's in /usr/local/bastille/jails/$NAME . For a
thin jail, there will already be a line in the fstab , so this can be pasted in prior to it, or after, or just
the relevant row.

While the jail is stopped, we need to ensure mysql (mariadb) has the powers is needs.

zfs create -o compress=lz4 -o atime=off zroot/data/dbs/

zfs create -o compress=lz4 -o atime=off zroot/data/dbs/bookstack

bastille pkg bs_jail install -y mariadb102-client mariadb102-server

As mentioned on a prior page, newer packages for mariadb seem to behave differently, so
parts of this tutorial related to mariadb may need to be adjusted.

I'm leaving myself (and whoever else) a possible hint. A newer mysql has a different
syntax. The following link talks about it midway down the page:
https://arstechnica.com/gadgets/2020/05/caddy-offers-tls-https-and-more-in-one-
dependency-free-go-web-server/ ... I suspect there's more to it though...

cd /usr/local/data/dbs/

chown 88:88 bookstack/

bastille stop bs_jail

Device Mountpoint FStype Options Dump Pass#
/usr/local/data/dbs/bookstack /usr/local/bastille/jails/bs_jail/root/var/db/mysql nullfs rw,late 0 0

https://arstechnica.com/gadgets/2020/05/caddy-offers-tls-https-and-more-in-one-dependency-free-go-web-server/
https://arstechnica.com/gadgets/2020/05/caddy-offers-tls-https-and-more-in-one-dependency-free-go-web-server/

Now you can restart the jail and finish the setup.

Install PHP
Install PHP, as well as the necessary PHP extensions.

I guess we can check the version.

Soft-link php.ini-production to php.ini .

Enable and start PHP-FPM.

Install MariaDB
Install MariaDB. (Skip this one step if you already ran this command in anticipation of nullfs-
mounting the db folder.)

Might as well check the version.

echo 'allow.raw_sockets = "1";' >> /usr/local/bastille/jails/bs_jail/jail.conf

bastille start bs_jail

bastille pkg bs_jail install -y php72 php72-mbstring php72-tokenizer php72-pdo php72-pdo_mysql \
php72-openssl php72-hash php72-json php72-phar php72-filter php72-zlib php72-dom \
php72-xml php72-xmlwriter php72-xmlreader php72-pecl-imagick php72-curl php72-session \
php72-ctype php72-iconv php72-gd php72-simplexml php72-zip php72-filter php72-tokenizer \
php72-calendar php72-fileinfo php72-intl php72-mysqli php72-phar php72-opcache php72-tidy

bastille cmd bs_jail php --version

bastille cmd bs_jail ln -s /usr/local/etc/php.ini-production /usr/local/etc/php.ini

bastille sysrc bs_jail php_fpm_enable=yes

bastille service bs_jail php-fpm start

bastille pkg bs_jail install -y mariadb102-client mariadb102-server

Enable and start MariaDB.

Check if it's running, because we might have permissions issues or something:

Assuming we're up and running, let's move on.

Get MariaDB ready
Run the secure installation executable to lock things down. Note your root password you create.

Log into MariaDB as the root user.

Create a database (or use an existing name, if you'll be importing, which I will).

Install Nginx
Install Nginx.

bastille cmd bs_jail mysql --version

bastille sysrc bs_jail mysql_enable="yes"

bastille service bs_jail mysql-server start

bastille service bs_jail mysql-server status

If there's an issue, one possibility could be the inability to write to /tmp . A bastille cmd bs_jail
chmod 1777 /tmp would solve that. But after mariadb102 , there seems to be some other issue
that I haven't figured out yet.

bastille cmd bs_jail mysql_secure_installation

bastille cmd bs_jail mysql -u root -p

CREATE DATABASE dbname; # substitute with your choice of name, though it does not matter if creating new
GRANT ALL ON dbname.* TO 'username' IDENTIFIED BY 'password'; # substitute any user and pass
FLUSH PRIVILEGES;
exit;

Check the version.

Enable and start Nginx.

Set up Nginx for BookStack.

And we'll add:

Now we need to include bookstack.conf in the main nginx.conf file.

bastille pkg bs_jail install -y nginx

bastille cmd bs_jail nginx -v

bastille sysrc bs_jail nginx_enable=yes

bastille service bs_jail nginx start

bastille cmd bs_jail vim /usr/local/etc/nginx/bookstack.conf

server {
 listen 80;
listen [::]:80; # you may need to comment this out
 server_name bookstack.mydomain.tld; # substitute hostname.domain
 root /usr/local/www/bookstack/public;

 index index.php index.html;

 location / {
 try_files $uri $uri/ /index.php$is_args$args;
 }

 location ~ \.php$ {
 try_files $uri =404;
 include fastcgi_params;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_pass 127.0.0.1:9000;
 }
}

And add the following line to the http {} block.

Test the Nginx configuration changes.

Good? Then reload Nginx.

Install Composer
Install Composer by running the script on their website. Note the final step is not on their website.

Go to their website for line 2 below: https://getcomposer.org/download. The remaining steps are
the same (plus line 5).

bastille console bs_jail

And we're back in the land of the host. Now we'll check this version.

bastille cmd bs_jail vim /usr/local/etc/nginx/nginx.conf

include bookstack.conf;

bastille cmd bs_jail nginx -t

bastille service bs_jail nginx reload

This is going into the bs_jail console again briefly!

php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"
php -r "if (hash_file('SHA384', 'composer-setup.php') === 'long_hash') { echo 'Installer verified'; } else { echo
'Installer corrupt'; unlink('composer-setup.php'); } echo PHP_EOL;"
php composer-setup.php
php -r "unlink('composer-setup.php');"
mv composer.phar /usr/local/bin/composer
exit

bastille cmd bs_jail composer --version

https://getcomposer.org/download

Install BookStack
Since composer is not intended to be run as root user, we're going to set up a user. We'll run most
of these within the jail.

In the jail, we'll run adduser , with "username" name (whichever name you chose when you gave it
privileges to write to the mysql db), add it to the wheel group, choose bash shell, add password,
and done. Here's a head start:

Great, but let's make this easier on ourselves. Run the visudo command and uncomment the
%wheel ALL=(ALL) ALL line to allow members of the wheel group to execute any command.

Then su - bs_user , and let's get started already.

Let's create the document root folder and take ownership of it.

Run the composer install command from the /usr/local/www/bookstack directory.

Copy the .env.example file to .env and populate it with your own database (and mail details?).

bastille console bs_jail

adduser -s bash -G wheel

visudo

Uncomment by removing hash (#) sign
 %wheel ALL=(ALL) ALL

sudo mkdir -p /usr/local/www/bookstack

sudo chown -R username:username /usr/local/www/bookstack

Substitute with the user you just created (and whose shell you're in now).

composer install

cp .env.example .env

vim .env

You can generally get away with just changing the db name, db user, and db password (per
MariaDB steps above). You may need to put the user and password in double quotes. Come back
to this step if php artisan migrate says access denied . If importing a database, be sure to use that db
name. For a public web server, be sure to update APP_URL as well.

Optional: Ensure that the storage , bootstrap/cache and public/uploads folders are writable by the web
server. (Prob can ignore given we've got a chown incoming.)

In the application root (where you should already be), run the following command.

Finish up!
To update the database:

If there was an error here, fix the problem, then run the following, and then jump back up three
steps (to the . env file).

Change ownership of the /usr/local/www/bookstack directory to www .

You can now login using the default admin details admin@admin.com with a password of password
(or, if you've restored a db, then you can log in with those credentials). It is recommended to
change these details directly after your first login. Create your user account as an admin user, log
in with it, and then disable the default admin user.

Are We Really Done?
As things stand, the BookStack webserver is listening on the jail's internal IP on port 80 (http). I
would not recommend setting up pf to redirect http traffic to the jail. The jail will be waiting and
ready when we can access it securely. We'll do that next in our second... err... third jail. We'll
create a simple website in the second jail. Plus it'll buy time for the following...

php artisan key:generate

php artisan migrate

php artisan config:clear
php artisan cache:clear

sudo chown -R www:www /usr/local/www/bookstack

Also! In our initial legwork of getting the server set up, we touched on DNS records. Well, now is a
good time (actually, these records don't seem to instantaneously populate, so before now would
have been better) to create a CNAME record. Over in NameCheap, the 'hostname' is "bookstack",
or "bs", or whatever you want... "docs"? ... and "mydomain.tld" is the 'value', and save, and you're
done.

Bonus
At the time of writing this, BookStack has not implemented a change requested by users (and even
submitted). But it works! One notable item missing from BookStack is the ability to go to the next
or previous pages. Well, if you add the following script to the custom header settings, it'll insert
this into the <head> of the html, and bam, buttons.

The one thing you'll want to do is set your own rgb numbers in the two .bnav-page-button:hover CSS
items, so you'll get whatever color you want, rather than the red that is currently used.

Check out the relevant PR for more info. https://github.com/BookStackApp/BookStack/issues/1381

<script>
function Button(type, hint, title, attributes){

const prevSVG = '<svg preserveAspectRatio="xMidYMid meet" height="1em" width="1em" fill="none"
xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" stroke-width="2" stroke-linecap="round" stroke-
linejoin="round" stroke="currentColor"><g><line x1="19" y1="12" x2="5" y2="12"></line><polyline
points="12 19 5 12 12 5"></polyline></g></svg>';
const nextSVG = '<svg preserveAspectRatio="xMidYMid meet" height="1em" width="1em" fill="none"
xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" stroke-width="2" stroke-linecap="round" stroke-
linejoin="round" stroke="currentColor"><g><line x1="5" y1="12" x2="19" y2="12"></line><polyline
points="12 5 19 12 12 19"></polyline></g></svg>';
var currentSVG = '';

if(type == "next"){
currentSVG = nextSVG
} else {
currentSVG = prevSVG
}

this.element = document.createElement("a");
this.element.classList.add("bnav-page-button");

this.element.classList.add(type);
var inner = '<div class="bnav-card-svg ' + type + '">' + currentSVG + '</div><div class="bnav-page-card ' +
type + '"><div class="bnav-card-hint">' + hint + '</div><div class="bnav-card-
title">' + title + '</div></div>'
attributes.innerHTML = inner

for (var i in attributes) {
this.element[i] = attributes[i];
}
return this.element;
}

document.addEventListener("DOMContentLoaded", function() {
if (window.location.pathname.indexOf("page")) {

var pages = document.querySelectorAll("a.page"),
current = document.querySelector("a.selected"),
currentIndex = Array.prototype.indexOf.call(pages, current);

var pageNavLinks = document.createElement("div");
pageNavLinks.classList.add("bnav-page-nav-links")
document.querySelector(".page-content").appendChild(pageNavLinks);

if (pages.item(currentIndex - 1) != null) {
var prevPageEl = pages.item(currentIndex - 1);
var prevButton = new Button('prev', 'Previous Article', prevPageEl.innerText, { href: prevPageEl.href })
document.querySelector(".bnav-page-nav-links").appendChild(prevButton);
}

if (pages.item(currentIndex + 1) != null) {
var nextPageEl = pages.item(currentIndex + 1);
var nextButton = new Button('next', 'Next Article', nextPageEl.innerText, { href: nextPageEl.href })
document.querySelector(".bnav-page-nav-links").appendChild(nextButton);
}
}
});
</script>

<style>

/* bottom page navigation */

.bnav-page-nav-links {
width: auto;
margin: 3em 0 0 0;
display: grid;
padding: 1.5em 0 0 0;
column-gap: 24px;
grid-template: "previous next" auto / 1fr 1fr;
border-top: solid #EAEAEA 1px;
}

.bnav-page-button {
color: rgb(36, 42, 49) !important;
display: flex;
margin: 0;
padding: 0;
position: relative;
flex-direction: row;
align-items: center;
text-decoration: none !important;
border: 1px solid rgb(230,236,241);
border-radius: 3px;
box-shadow: rgba(116,129,141,0.1) 0px 3px 8px 0px;
transition: border 250ms ease 0s;
}

.bnav-page-button:hover{
color: rgb(18, 124, 173) !important;
border-color: rgb(18, 80, 173);
cursor: pointer;
}

.bnav-page-button:hover svg{
color: rgb(18, 80, 173);
}

.bnav-page-button.prev {
grid-area: previous / previous / previous / previous;

}

.bnav-page-button.next {
grid-area: next / next / next / next;
}

.bnav-page-card {
flex: 1 1 0%;
margin: 0px;
display: block;
padding: 1em;
text-align: left;
}

.bnav-page-card.next {
text-align: left;
}

.bnav-page-card.prev {
text-align: right;
}

.bnav-card-svg {
padding-right: 0;
flex: 0 0 auto;
color: rgb(157, 170, 182);
margin: 0px;
display: block;
padding: 16px;
font-size: 24px;
}

.bnav-card-svg.prev {
order: 0
}

.bnav-card-svg.next {
order: 1
}

.bnav-card-svg > svg {
width: 1em;
height: 1em;
vertical-align: middle;
transition: color 250ms ease 0s;
}

.bnav-card-hint {
color: rgb(157, 170, 182);
margin: 0;
display: block;
padding: 0;
}

.bnav-card-hint > span {
font-size: 12px;
font-weight: 400;
line-height: 1.2;
}

.bnav-card-title {
margin: 0px;
display: block;
padding: 0px;
transition: color 250ms ease 0s;
}

.bnav-card-title > span {
font-size: 16px;
font-weight: 500;
line-height: 1.5;
}

.bnav-card-icon {
flex: 0 0 auto;
color: rgb(157, 170, 182);
margin: 0px;
display: block;

Bonus #2: Updating
According to BookStack site, this can be done very quickly in a single line. We'll try it.

It works! It warns you that you're doing this migration in production, and you say 'yes' and it's
done.

References
https://www.vultr.com/docs/how-to-install-bookstack-on-freebsd-12

Updating: https://www.bookstackapp.com/docs/admin/updates/

I skipped a few things, but it should work as I describe.

padding: 16px;
font-size: 24px;
transition: color 250ms ease 0s;
}

/* end bottom page navigation */
</style>

git pull origin release && composer install --no-dev && php artisan migrate

https://www.vultr.com/docs/how-to-install-bookstack-on-freebsd-12

Website Jail
Before this, I can't think of a time where I edited or wrote html. I can remember creating a basic
index.php as a test for nginx and/or apache a couple times while tinkering with Nextcloud, but that
might be it.

Accordingly, this will be a very basic start of a very simple website. I maybe look forward to doing
"cool" complicated stuff in the future, but for now we'll have close to nothing on it. I'm creating the
web page because I figure that I might as well have a landing page for the domain itself, but I'm
more interested in setting up the reverse proxy work for the subdomains.

To set the expectations properly, the goal is to create an html file that renders in a browser by
visiting mydomain.tld . We'll not be worrying about TLS/https (because caddy will eventually do that
for us). We'll simply install a web server, create the html file, port forward (rdr) in PF to the jail,
and visit in the browser. Someone who's done this a couple times - even if they're documenting it -
might be be done in under two minutes. It took me more than two minutes.

Prep
Run the custom_cshrc.sh you created in /usr/local/scripts to put a custom .cshrc file in the jail.
Remember, the script just takes the jail name as its only argument.

If desired, adjust the date and time with tzsetup or bastille cmd website_jail tzsetup .

Web Server
We'll keep it simple and consistent (i.e., BookStack is served by nginx), so we'll install nginx .

And then we'll enable it and start it.

bastille pkg website_jail install -y nginx vim-console

bastille sysrc website_jail nginx_enable="YES"

bastille service website_jail nginx start

We'll configure it in a moment.

Internet Content
That sure is a fancy title for a bare html file.

Let's just hop into the jail console for a few minutes.

And we'll head to the usual FreeBSD spot, create a website directory, and then file.

And we will create our initial homepage.

Configuration
Now we can create our configuration in nginx so it knows how to listen and what content to serve.

bastille console website_jail

cd /usr/local/www

mkdir mydomain.tld && cd mydomain.tld

vim index.html

<!DOCTYPE html>
<html>
<body>

<h1>We Did It!</h1>

<p>How exciting.</p>

<p>Be sure to check out all the great related services. Links coming soon...</p>

</body>
</html>

vim /usr/local/etc/nginx/nginx.conf

In theory, all we have to do is change server_name localhost to server_name mydomain.tld
www.mydomain.tld and change root /usr/local/www/nginx to root /usr/local/www/mydomain.tld . With any
luck, we can reload nginx and be ready to test (almost).

Before moving forward, exit out of the jail console.

First we test the config (even though the test is built into the reload).

If successful, we perform the reload.

Testing It Out
You'll need the jail's IP for this, which you can get from bastille list .

Then there needs to be a redirect rule in PF , which is basically port forwarding. There's an
example already in /etc/pf.conf , so it just needs to be uncommented, and updated with the website
jail's internal IP.

And it needs to be tested with:

Hiccup
NameCheap.com provides a default CNAME record that redirects my internet traffic to their
"parking page" and I hadn't deleted that yet, so I had to wait on it to die.

Visiting the IP address does successfully display the webpage, but it would have been nice to see
DNS do what it's supposed to too. Of course, it worked via hostname eventually.

Last Step

bastille cmd website_jail nginx -t

bastille service website_jail nginx reload

the macro
website_ip = "10.101.10.140"

the port forward
rdr pass inet proto tcp from any to any port {80, 443} -> $website_ip

pfctl -vnf /etc/pf.conf

Remove those rules from pf and force reload pf . We will be using https in no time flat after the
next jail is up.

Caddy Jail
We will ultimately change PF to direct all web traffic to this jail. This jail will run caddy as a
reverse proxy for the other jails. Web request SSL terminations happen at the caddy web server,
and the traffic is then passed transparently to the respective jails. A great benefit of caddy is the
built-in Let's Encrypt feature for initial certs and renewals.

Preamble
The beginning steps are mostly the same across the jails. Before jumping in, if you haven't
already, remember to run custom_cshrc.sh caddy_jail , and then probably/possibly run bastille caddy_jail
tzsetup and choose your time zone. Actually, it would make the most sense for the reverse proxy
to be on the host's time, which it should be already, so ignore that.

Next, we may update the jail. If you just created or updated your base jail, or if this is a thin jail,
then there is actually no reason for this. But if you do need/want to do an update, refer to a prior
page that talks about initial jail setup.

Setup Specific to this Jail
We install what we need from pkg .

You should read the message spit out by pkg because it tells you all you need to know, pretty
much. In particular, pay attention to the version of caddy . This write-up centers around v1 . This
write-up will not work well with v2 .

Config for the Jail
We'll need to give caddy the ability to "authenticate" us with Let's Encrypt.

And then we'll need the Caddyfile , which hopefully works how we think it will.

bastille pkg caddy_jail install -y caddy vim-console curl

bastille sysrc caddy_jail caddy_cert_email="your.email@example.org"

But wait! Save yourself some time and run this:

Your config/Caddyfile will be different depending on v1 or v2. The quarterly FreeBSD package is v1
right now (as of the time of this original write-up).

For v1 :

For v2 :

bastille cmd caddy_jail caddy -version

bastille console caddy_jail

cd /usr/local/

mkdir www && cd www

vim Caddyfile

Depending on V1 or V2, mind the Caddyfile location. V2 moves the Caddyfile location from
/usr/local/www to /usr/local/etc/caddy/Caddyfile , so be sure its location matches the location
listed in the rc file (and is preferably in the standard location according to V1 or V2).

mydomain.tld, www.mydomain.tld {
 proxy / 10.101.10.140:80 {
 transparent
 }
}

bookstack.mydomain.tld {
 proxy / 10.101.10.110:80 {
 transparent
 }
}

mydomain.tld, www.mydomain.tld {
 reverse_proxy 10.101.10.140
}

bookstack.mydomain.tld {

Then exit out of the jail's console. And then we enable caddy and start it (almost).

Grand Finale
Now we adjust /etc/pf.conf to forward http and https traffic to the caddy jail.

And then we test that the config doesn't have an errors, and then reload PF . (Reload w/ just -f .)

And now let's start caddy and hope that it grabs certs and starts serving our two existing jails.

And either check the URL in your browser, or also check:

That was easy.

 reverse_proxy 10.101.10.110
}

bastille sysrc caddy_jail caddy_enable="YES"

the macro
caddy_ip = "10.101.10.100"

and the port forward
rdr pass inet proto tcp from any to any port {80, 443} -> $caddy_ip

pfctl -vnf /etc/pf.conf

bastille service caddy_jail caddy start

bastille service caddy_jail caddy status

