
Legwork
Initial Steps
Initial Login
Jail Preparation/Setup

Initial Steps
Domain
It was high time that I "owned" part of the internet, so I went on NameCheap.com and "bought" two
URLs. I went with the WhoisGuard feature, and I set the domain registrations for auto-renewal.

VPS
I then registered w/ DigitalOcean and provided my credit card. Now I am ready to roll.

I started a new project on DigitalOcean, and created a new droplet. I selected FreeBSD 12.1 w/ ZFS
(could also choose 11.3, and could choose UFS or ZFS, but ZFS is great, and I know I'll wish I had it
once I get a little more advanced). I went with the $5/mo plan (1 vCPU, 1 GB RAM, 25GB SSD). I
was not provided a root password. Instead, I had to provide an SSH pubkey. All the better.

VPS Setup
It would be wise to pop into the Networking tab and create a basic firewall for the droplet. I chose
to accept https , http , and SSH , all on default ports. FreeBSD doesn't have a firewall running out
the box, so this step is probably wise.

Domain Setup
Shortly after creating the droplet, I brought the newly acquired IP address over to NameCheap and
created A records.

Created an A record for the domain where the host is simply @ , meaning mydomain.tld
will work as is.
Created an A record for the domain where the host is www , so www.mydomain.tld will also
work.
Left in place, for now, the CNAME record to the NameCheap parking page. (I should have
probably deleted right away.)
Also left in place, for now at least, the URL redirect for the host @ to www.mydomain.tld. I
need to research this.

All Done

http://www.mydomain.tld
http://www.mydomain.tld

Well, not so fast. DigitalOcean and NameCheap both have the ability to enable 2FA. Maybe you
should get that out of the way before you get too far. I did.

It's almost time to get various jails set up and piped into a reverse proxy (another jail), and then
have CNAME records created for pointing subdomains (a subdomain for each jail) at the droplet's
IP. You do the CNAME records in the Advanced DNS screen of the NameCheap site.

At this point, there's not much left to do but log in to the server. I tried ssh root@mydomain.tld
right away, and it didn't work, and I had to use the IP address. But after a little while, it worked
fine. DNS is fun, right?

mailto:root@mydomain.tld,

Initial Login
Upon SSH'ing into the server, I am greeted w/ a cold black and white terminal. Excellent.

Housekeeping
Before moving forward, let's get the system up to date and grab a few packages we'll need
momentarily.

I was tempting to install curl and wget , but those are covered with fetch , which is part of the
FreeBSD base system.

Get the clock up to date, just in case it's not.

For the host, you'll probably want to make sure you select the timezone where the VPS is located.

Enable the time service.

And then might as well start it now.

What are we working with here (supposedly a 25G SSD, right?)... lsblk reveals:

freebsd-update fetch install

pkg update && pkg upgrade -y

pkg install -y git nano tmux vim-console lsblk

tzsetup

sysrc ntpd_enable="YES"

sysrc ntpd_sync_on_start="YES"

service ntpd start

Running swapinfo -h confirms the swap space.

Quality of Life
I prefer to freshen up the .cshrc file. Here's the original.

DEVICE MAJ:MIN SIZE TYPE LABEL MOUNT
vtbd0 0:69 25G GPT - -
 vtbd0p1 0:71 256K freebsd-boot gptid/fe84c375-529c-11ea-... -
 vtbd0p2 0:72 2.0G freebsd-swap gpt/swap0 -
 vtbd0p3 0:89 23G freebsd-zfs gpt/disk0 <ZFS>

$FreeBSD: releng/12.1/bin/csh/dot.cshrc 338374 2018-08-29 16:59:19Z brd $
#
.cshrc - csh resource script, read at beginning of execution by each shell
#
see also csh(1), environ(7).
more examples available at /usr/share/examples/csh/
#

alias h history 25
alias j jobs -l
alias la ls -aF
alias lf ls -FA
alias ll ls -lAF

A righteous umask
umask 22

set path = (/sbin /bin /usr/sbin /usr/bin /usr/local/sbin /usr/local/bin $HOME/bin)

setenv EDITOR vi
setenv PAGER less
setenv BLOCKSIZE K

if ($?prompt) then
 # An interactive shell -- set some stuff up
 set prompt = "%N@%m:%~ %# "

And then I added some things, mostly inside the if block:

 set promptchars = "%#"

 set filec
 set history = 1000
 set savehist = (1000 merge)
 set autolist = ambiguous
 # Use history to aid expansion
 set autoexpand
 set autorehash
 set mail = (/var/mail/$USER)
 if ($?tcsh) then
 bindkey "^W" backward-delete-word
 bindkey -k up history-search-backward
 bindkey -k down history-search-forward
 endif

endif

if ($?prompt) then

 #set prompt = "%N@%m:%~ %# "	# comment this out, and replace it below

 # colors for prompt (0 for regular and 1 for bold, or use %B%b for bold)
	set red="%{\033[0;31m%}"
	set green="%{\033[0;32m%}"
	set yellow="%{\033[0;33m%}"
	set blue="%{\033[0;34m%}"
	set magenta="%{\033[0;35m%}"
	set cyan="%{\033[0;36m%}"
	set white="%{\033[0;37m%}"
	set end="%{\033[0m%}" # This is needed at the end... :(

	# Set username color. (Preferably, unique)
	if ($USER == "root") then
	 set user_color="${yellow}"
	else
	 set user_color="${magenta}"
	endif

Turn off the mail notifications
Add the following to /etc/rc.conf , whether pasting or by sysrc .

Security
More remote user access
I've got two local computers. I pasted my other comp's SSH pubkey in a shared file where this
comp could copy it, and then I pasted it into .ssh/authorized_keys . Now both computers can SSH in.

	# prompt vars
	set name = "${user_color}%B%n%b${end}"
	set host = "${cyan}%m${end}"
	set dir = "${red}%~${end}"

	set prompt = "[${name}@${host}:${dir}]%# "

	set complete = enhance

	# Clean up...
	unset red green yellow blue magenta cyan white end
	unset name host dir

endif

color in autocomplete
set color
color in ls
alias ls ls -G

BSD colors for ls. See https://geoff.greer.fm/lscolors/
setenv LSCOLORS gxfxcxdxbxegedabagacad

sendmail_enable="NO"
sendmail_submit_enable="NO"
sendmail_outbound_enable="NO"
sendmail_msp_queue_enable="NO"

Sweet.

SSH authentication
We may want to clean up the /etc/ssh/sshd_config by disallowing password logins. That particular
setting is already set to 'no' but there are other things, like ChallengeResponseAuthentication and
UsePAM which could also be set to 'no' (for a belt-and-suspenders approach, as they say).

System users
The default user is the root user. To continue the belt-and-suspenders approach theme, we could
create a user for me (in the wheel group and operator group) and then disable root SSH login as
well. Smart. But I'm skipping that.

Root password
More belt-and-suspenders - we could/should add a root password. Very smart. Why am I skipping
this?

Obscurity
We could change the default listening port. This will decrease the noise, but is it really worth it? I
mean, once the server is set up, you can just block SSH via the DigitalOcean firewall. It's like 2FA
in that regard... sorta. Also inconvenient though.

Blocking bots
We could/should install Fail2Ban. Maybe later. For now (a bit below), we'll implement basic, built-
in brute force protection.

Firewall
Here's how we're starting off with /etc/pf.conf :

macros -> tables -> options -> traffic normalization -> queueing -> translation (NAT) -> packet filtering

MACROS

the external network interface to the internet
ext_if="vtnet0"
ext_if_ip="YOUR.NEW.IP.HERE"

port on which sshd is running
ssh_port = "22"

allowed inbound ports (host services)
don't include ports that'll be redirected to jails
#inbound_tcp_services = "{auth, " $ssh_port " }"
#inbound_udp_services = "{dhcpv6-client}"
web_services = "{http, https}"

jail IP addresses
#caddy_ip = "10.101.10.100"
#bookstack_ip = "10.101.10.110"

TABLES

table <bruteforce> persist
table <webcrawlers> persist
table <rfc6890> { 0.0.0.0/8 10.0.0.0/8 100.64.0.0/10 127.0.0.0/8 169.254.0.0/16 \
172.16.0.0/12 192.0.0.0/24 192.0.0.0/29 192.0.2.0/24 192.88.99.0/24 \
192.168.0.0/16 198.18.0.0/15 198.51.100.0/24 203.0.113.0/24 \
240.0.0.0/4 255.255.255.255/32 }
jails table is used by Bastille
table <jails> persist

OPTIONS

politely send TCP RST for blocked packets. The alternative is
"set block-policy drop", which will cause clients to wait for a timeout
before giving up.
set block-policy return

log only on the external interface
set loginterface $ext_if

skip all filtering on localhost
set skip on lo

TRAFFIC NORMALIZATION

reassemble all fragmented packets before filtering them
scrub in on $ext_if all fragment reassemble max-mss 1440

TRANSLATION

NAT out jail traffic
nat pass on $ext_if from <jails> to any -> $ext_if_ip

static port forwarding for http/https traffic to [reverse proxy] jail
#rdr pass inet proto tcp from any to any port {80, 443} -> $caddy_ip

PACKET FILTERING

block forged client IPs (such as private addresses from WAN interface)
antispoof quick for $ext_if

skip rfc6890 on external interface
block in quick on egress from <rfc6890>
block return out quick on egress to <rfc6890>

default behavior: block all traffic
block all

allow all icmp traffic (like ping)
pass quick on $ext_if proto icmp
pass quick on $ext_if proto icmp6

special pass rules for SSH
pass in quick on $ext_if proto tcp to port $ssh_port \
 keep state (max-src-conn 6, max-src-conn-rate 4/10, \
 overload <bruteforce>)

special pass rules for http/https (NOT SURE ABOUT THIS W/ REVERSE PROXY)
#pass in on $vtnet0 proto tcp to port { 80 443 } \
keep state (max-src-conn 45, max-src-conn-rate 9/1, \
overload <webcrawlers> flush global)

allow incoming traffic to services hosted by this machine (to the host; not jails)
#pass in quick on $ext_if proto tcp to port $inbound_tcp_services
#pass in quick on $ext_if proto udp to port $inbound_udp_services

allow all outgoing traffic
pass out quick on $ext_if

There's some nice foreshadowing in there.

There's a lot going on in that file. Here's a quick rundown:

1. Macros are for expanding into the rules below. Additionally, they make it so you can have
rules that don't change between systems because you just have to update the macros for
the system-specific variables.

2. Some of the macros are commented out for now. We may add them later. For now, this
is all we need.

3. A table is kind of like a macro, but not really. For one, they don't expand out in the shell's
variable substitution (which you'll see with pfctl -vnf /etc/pf.conf). They behave that way
though, where a rule applies to every IP address or range in the table. The bruteforce and
webcrawler tables are for keeping track of IP's that abuse the server. The rfc6890 table is
for IP's that we should never encounter anyway. The jails table is populated by Bastille
(the jail/container manager we'll be using, which we'll talk more about later), and it
contains all the Bastille jail IP's.

4. The options generally are already commented (not commented out... literally commented,
so go read them).

5. The NAT rule (in combination with gateway_enable in /etc/rc.conf) allows jail traffic to pass
out through the external interface and appear to come from the server's IP rather than the
otherwise un-routeable jail's IP.

6. The rest is either commented, self-explanatory (perhaps with research), or commented on
below.

Double check that the syntax is good and appears correct.

Assuming no errors, now it can be enabled.

And then, finally, PF can be started, which will boot us from our SSH session(s).

It is wise to enable logging too. Besides, we'd need to parse the logs for Fail2Ban. (Can it parse
binary logs?)

The data in the pflog file is written in binary, so one way to view it is:

pfctl -vnf /etc/pf.conf

sysrc pf_enable="YES"

service pf start

sysrc pflog_enable="YES"

tcpdump -ner /var/log/pflog

May also want to install pftop .

PF Tables
We're getting brute force protection w/ a bruteforce table. This is already included above.

We'll periodically empty/clear the bruteforce table (since brute forcing tends to not happen from the
same IP for long periods of time), so we'll write a shell script to do this for us.

In the script, we'll keep the IP's that have been around for 2 weeks or less, and flush/expire all else.

table <bruteforce> persist
table <webcrawlers> persist
table <rfc6890> { 0.0.0.0/8 10.0.0.0/8 100.64.0.0/10 127.0.0.0/8 169.254.0.0/16 \
172.16.0.0/12 192.0.0.0/24 192.0.0.0/29 192.0.2.0/24 192.88.99.0/24 \
192.168.0.0/16 198.18.0.0/15 198.51.100.0/24 203.0.113.0/24 \
240.0.0.0/4 255.255.255.255/32 }

{...}

skip rfc6890 on external interface
block in quick on egress from <rfc6890>
block return out quick on egress to <rfc6890>

{...}

special pass rules for SSH
pass in quick on $ext_if proto tcp to port $ssh_port \
 keep state (max-src-conn 6, max-src-conn-rate 4/10, \
 overload <bruteforce>)
 # the very end could have 'flush global', but I'd risk ending my
 # own connection if I accidentally triggered it

could do a similar rule for http/https using <webcrawlers>

vim /usr/local/bin/clear_overload.sh

#!/bin/sh

pfctl -t bruteforce -T expire 1209600

It needs to be executable.

And then we put it in a cron job to run every first day of the week on the zeroth minute of 2am
(with crontab -e).

Other Config
It's worth looking at the /etc/rc.conf . It comes like this:

chmod 755 /usr/local/bin/clear_overload.sh

minute hour mday month wday command

 0 2 * * 1 /usr/local/bin/clear_overload.sh

hostname="freebsd-hostname"
cloudinit_enable="YES"
sshd_enable="YES"
ifconfig_vtnet0="DHCP"
digitaloceanpre="YES"
digitalocean="YES"
zfs_enable="YES"

DigitalOcean Dynamic Configuration lines and the immediate line below it,
are removed each boot.

DigitalOcean Dynamic Configuration
defaultrouter="YOUR.NEW.IP.HERE"
DigitalOcean Dynamic Configuration
ifconfig_vtnet0="inet YOUR.NEW.IP.HERE netmask 255.255.240.0"
DigitalOcean Dynamic Configuration
ifconfig_vtnet0_alias0="inet 10.10.0.5 netmask 255.255.0.0"
DigitalOcean Dynamic Configuration
ifconfig_vtnet0_ipv6="inet6 2604:A880:0400:00D0:0000:0000:1B07:F001 prefixlen 64"
DigitalOcean Dynamic Configuration
ipv6_defaultrouter="2604:A880:0400:00D0:0000:0000:0000:0001"
DigitalOcean Dynamic Configuration
ipv6_activate_all_interfaces="yes"

And we have added:

And we'll soon be adding (more foreshadowing!):

Bonus Round
I've been using vim more than usual during this process.

1. It would be helpful to begin to put together a config file (.vimrc).
2. It would be wise to add it to my custom_cshrc.sh script, so I have it in jails too. (More

foreshadowing!)

Anywoo, this is still a todo.

ntpd_enable="YES"
ntpd_sync_on_start="YES"

sendmail_enable="NO"
sendmail_submit_enable="NO"
sendmail_outbound_enable="NO"
sendmail_msp_queue_enable="NO"

pf_enable="YES"
pflog_enable="YES"

bastille_enable="YES"
cloned_interfaces="lo1"
ifconfig_lo1_name="bastille0"
gateway_enable="YES"

Jail Preparation/Setup
Filesystem
We'll want a dataset to store data that will exist outside the jails. Yay for ZFS (for reasons I'm
glossing over...).

(Did I have to create /usr/local/data before doing the above? I don't recall... but I'm pretty sure no.)

We expect to have a BookStack jail, which has a database.

And we can have a dataset for the BookStack db, specifically.

We'll get to this later, but now (later) we can nullfs -mount the dataset inside the jail (in its fstab)
like so:

And in case you jump ahead, you'll also need to know that mysql needs to own the directory.

Speaking of jumping ahead... I had issues when using a newer version of MariaDB a few months
later. The MariaDB setup might need more to get it working. It may have to do with changes to
Mysql.

Jail Management

zfs create -o compress=lz4 -o atime=off -o mountpoint=/usr/local/data zroot/data

zfs create -o compress=lz4 -o atime=off zroot/data/dbs

zfs create -o compress=lz4 -o atime=off zroot/data/dbs/bookstack

Device Mountpoint FStype Options Dump Pass#
/usr/local/data/dbs/bookstack /usr/local/bastille/jails/bs_jail/root/var/db/mysql nullfs rw,late 0 0

cd /usr/local/data/dbs/
chown -R 88:88 bookstack/

It's tempting to manage jails by hand, but I'll leave that exercise to my local server. We'll use this
script-based tool instead.

We want the Bastille jails to start up upon system reboot, so we add it to the rc.conf file.

And we can hop right into the Bastille configuration that defines the jails' default parameters.

The notable changes are:

Something of note is it uses a particular loopback device that must be created (added to rc.conf) .

And since the jails are on a separate loopback network and need to be NAT'd, we probably need
this:

And then the cloned interface can be brought up.

We would then update pf.conf accordingly to allow jail traffic if the example we started with didn't
already have this.

pkg install bastille

sysrc bastille_enable=YES

vim /usr/local/etc/bastille/bastille.conf

bastille_zfs_enable="YES"
bastille_zfs_zpool="zroot"

bastille_jail_addr="10.101.10.10" # not sure if this is even used or makes sense

sysrc cloned_interfaces+=lo1

sysrc ifconfig_lo1_name="bastille0"

sysrc gateway_enable="YES"

service netif cloneup

table <jails> persist

{...}

Base Jail
(For creating quickly update-able thin jails later)
It's pretty simple to create the base jail. This will download a fresh base install, basically.

You'll want to occasionally update this with:

We should now be ready to create jails.

(On a 25G instance, ZFS list currently reflects there is 16.8G remaining space.)

Initial Jail Creation
More foreshadowing!

Usage: bastille create [option] name release ip [interface].

Options - Empty, Thick, VNET (none of these)

Interface - vtnet (no!), bastille0 (yes, but implied)

nat on $ext_if from <jails> to any -> $ext_if_ip

static port forwarding for sending http/https to [reverse proxy] jail
rdr pass inet proto tcp from any to any port {80, 443} -> 10.17.89.45

When searching online, you may find that NAT rules end with -> ($ext_if) , but that will
include all aliases, which will make the NAT-ting most likely not behave as intended. You
want to NAT on the external IP (-> $ext_if_ip).

bastille bootstrap 12.1-RELEASE

bastille bootstrap 12.1-RELEASE update

bastille create caddy_jail 12.1-RELEASE 10.101.10.100

bastille create bs_jail 12.1-RELEASE 10.101.10.110

bastille create bw_jail 12.1-RELEASE 10.101.10.120

And after creating five thin jails, the remaining space is still 16.8G. Yay, ZFS, again!

Quick quality of life improvement in the
jails
Let's create a .cshrc for copying into the jails. It's the same as the regular one, but it uses different
prompt colors.

bastille create thelounge_jail 12.1-RELEASE 10.101.10.130

bastille create website_jail 12.1-RELEASE 10.101.10.140

$FreeBSD: releng/12.1/bin/csh/dot.cshrc 338374 2018-08-29 16:59:19Z brd $
#
.cshrc - csh resource script, read at beginning of execution by each shell
#
see also csh(1), environ(7).
more examples available at /usr/share/examples/csh/
#

alias h history 25
alias j jobs -l
alias la ls -aF
alias lf ls -FA
alias ll ls -lA

A righteous umask
umask 22

set path = (/sbin /bin /usr/sbin /usr/bin /usr/local/sbin /usr/local/bin $HOME/bin)

setenv EDITOR vi
setenv PAGER less
setenv BLOCKSIZE K

if ($?prompt) then
 # An interactive shell -- set some stuff up

 # colors for prompt (0 for regular and 1 for bold, or use %B%b for bold)
 set red="%{\033[0;31m%}"
 set green="%{\033[0;32m%}"
 set yellow="%{\033[0;33m%}"
 set blue="%{\033[0;34m%}"
 set magenta="%{\033[0;35m%}"
 set cyan="%{\033[0;36m%}"
 set white="%{\033[0;37m%}"
 set end="%{\033[0m%}" # This is needed at the end... :(

 # prompt vars
 set name = "${red}%B%n%b${end}"
 set host = "${red}%m${end}"
 set dir = "${cyan}%~${end}"

 set prompt = "[${name}@${host}:${dir}]%# "

 #set prompt = "%N@%m:%~ %# "
 set promptchars = "%#"

 set complete = enhance

 set filec
 set history = 1000
 set savehist = (1000 merge)
 set autolist = ambiguous
 # Use history to aid expansion
 set autoexpand
 set autorehash
 set mail = (/var/mail/$USER)
 if ($?tcsh) then
 bindkey "^W" backward-delete-word
 bindkey -k up history-search-backward
 bindkey -k down history-search-forward
 endif

 # Clean up...
 unset red green yellow blue magenta cyan white end
 unset name host dir

Then mv each jail's .cshrc as .cshrc.orig , and then cp the .cshrc.jail as each jails's new
/root/root/.cshrc . See below for a script to do this quickly and easily.

Other Bits
It may be a good time to reboot the server. You've made several changes to the system, and you'll
want to make sure they stuck and are working correctly.

Changes to /etc/pf.conf require pfctl -f /etc/pf.conf **. Changes to /etc/rc.conf require... something.
Changing the .cshrc requires sourcing it or logging in fresh. The jails need to be started.
Rebooting will do all this, including starting the jails.

** Just make sure you at least have already run pfctl -vnf /etc/pf.conf to make sure the config works.

Common Initial Jail Setup
The beginning steps are mostly the same across the jails. Before jumping in, if you haven't
already, remember to mv the jail's .cshrc as .cshrc.orig , and then cp the host's .cshrc.jail as the
jails's new /root/root/.cshrc .

In fact, here's a script (that magically worked perfectly the first time I ran it), that I just saved in
/usr/local/scripts .

endif

color in autocomplete
set color
color in ls
alias ls ls -G

LS colors, made with https://geoff.greer.fm/lscolors/
setenv LSCOLORS gxfxcxdxbxegedabagacad

#!/bin/sh

Copies custom .cshrc from /root/.cshrc.jail in place of the
jail's default .cshrc, and renames the default as .cshrc.orig.

Exit script if error (non-zero return code)
set -e

check for a single arg (the name of the jail)
if ["$#" -ne 1]; then
 echo "Usage: $0 JAIL_NAME" >&2
 exit 1
fi

Variables to be used
jail_name="$1"
jails_dir="/usr/local/bastille/jails"
jail_dir="${jails_dir}/${jail_name}/root/root"

check that the directory exists
if [! -d "${jail_dir}"]; then
	echo "Directory ${jail_dir} doesn't exist." >&2
	exit 1
fi

check that the original .cshrc exists
if [! -f "${jail_dir}/.cshrc"]; then
	echo "File ${jail_dir}/.cshrc doesn't exist." >&2
	exit 1
fi

check that the custom .cshrc exists
if [! -f "/root/.cshrc.jail"]; then
	echo "Custom .cshrc.jail in /root doesn't exist." >&2
	exit 1
fi

mv ${jail_dir}/.cshrc ${jail_dir}/.cshrc.orig

cp /root/.cshrc.jail ${jail_dir}/.cshrc

Write to log briefly what happened
echo "Added custom .cshrc to ${jail_name}."

exit 0

Don't forget to chmod +x it. Then you just run it with /usr/local/scripts/custom_cshrc.sh <jail_name> .

Misc
Another initial jail setup task may be to set up the timezone. You can (unlikely, but possible) have
weird internet problems if your time is off. The host time being right is the most important, but feel
free to check the current date and time with the date command. If you need to update things, run
tzsetup and choose your timezone.

Also, you may update the jail. If you just created or updated your base jail, or if this is a thin jail,
then there is actually no reason for this. But if you do need/want to do an update...

So we must first edit .../jails/$jail/jail.conf to change securelevel from 2 to 0 , then restart the jail.

Then the updating can happen.

Then we edit .../jails/$jail/jail.conf again to change securelevel from 0 to 2 , then restart the jail
again.

And now you have a current, clean slate upon which to build.

Resources
The Bastille docs are great. https://bastillebsd.org/

Updates cannot be installed when the system securelevel (jail.conf setting) is greater than
zero.

bastille cmd $jail freebsd-update fetch install
bastille pkg $jail update
bastille pkg $jail upgrade -y

