
More Fun Stuff
Bitwarden-rs Jail
Gitea Jail
Website Jail w/ Git Power-up
IRC!Radio by dsc_

Bitwarden-rs Jail
My company provides a password manager, so I don't need this. But what they provide is closed
source. I may just switch over to bitwarden, but perhaps little by little. For now, I just want to get
this working.

Like the password manager I'm provided for work, this is a zero-knowledge setup; i.e., the database
is stored in an encrypted state, locked by my complex pass phrase. If someone someone gains
control of the jail, or even the host system, the database of records/credentials does them no
good. It's still scary to put up a publicly-accessible instance, but I'm doing it anyway. Besides, I'll
only use it in limited capacity for now, and perhaps I'll put it behind a VPN (Wiregaurd?) at some
point.

Advanced Prep (nullfs)
(Relocate database outside the jail)
If we ever have a problem with this jail and need to blow it away, it would be nice for the database
to live on. We can do this! In fact, this is probably one of several steps that could/should be taken
to ensure data not specific to the jail is saved outside the jail. We already did this for the
BookStack jail (and the majority of this section is a straight copy). Carrying on:

Bitwarden-rs stores the database in a /data directory. The standard install creates the /data
directory in /home/bitwardenrs/bitwarden_rs_dist . Due to the fact that this is a thin jail, the /home
directory (a few directories deep) where the null mount would go cannot be used; so instead we'll
mount the /data directory over top of the new data dir we'll create.

Then exit from the su and exit from the console.

zfs create -o compress=lz4 -o atime=off zroot/data/dbs/bitwarden

We will need to adjust the .env file accordingly.

bastille console bw_jail

cd /var && mkdir -p db/data

Adjust the jail's fstab .

On With It
First of all, let's not run tzsetup on this jail. That gave me problems with 2FA on another instance.
Let's try without it.

Grab initial packages/dependencies.

Adjust

bastille stop bw_jail

Device Mountpoint FStype Options Dump Pass#

/usr/local/bastille/releases/12.1-RELEASE /usr/local/bastille/jails/bw_jail/root/.bastille nullfs ro 0 0

/usr/local/data/dbs/bitwarden /usr/local/bastille/jails/bw_jail/root/var/db/data nullfs rw,late 0 0

bastille start bw_jail

Below, you'll need to set ownership or permissions on this /var/db/data , otherwise bitwarden-
rs can't write to it.

bastille pkg bw_jail install -y sqlite3 nginx git sudo vim-console bash node npm python27-2.7.18

We've got to do a bit of work inside the jail (it'll be easier there)

bastille console bw_jail

some npm dependency will need to have python2.7 and will fail with python3

cd /usr/local/bin/

set the symlink

ln -s /usr/local/bin/python2.7 python

Set up user.
Add new bitwardenrs user to the jail. Set the user below to: bitwardenrs. Enter every line, no need
for other configs, only your password

Adjust priv's and log in:

One add'l step needed: (maybe... try skipping it)

cd -

adduser -s bash

allow sudo, we will use it later

visudo

ADD

bitwardenrs ALL=(ALL) ALL

change to the new user to build and execute our service

su bitwardenrs

cd

id

should look like: uid=1001(bitwardenrs) gid=1001(bitwardenrs) groups=1001(bitwardenrs)

bitwardenrs@bw_jail:~ $ exit

root@bw_jail:~ # chmod 1777 /tmp

root@bw_jail:~ # su bitwardenrs

Another add'l step, and you can't skip this:
Within jail, as root , cd /var/db && chown -R bitwardenrs:bitwardenrs data)

Install rust

Time to build.

"If you need web-vault, we will build it here." Of course we need the web vault.

install latest rust version, pkg version may be outdated and can't build bitwarden_rs

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

include the rust env variables

source $HOME/.cargo/env

get back to the users home
cd ..

checkout the latest bitwarden_rs release

git clone https://github.com/dani-garcia/bitwarden_rs/

cd bitwarden_rs/

git checkout "$(git tag --sort=v:refname | tail -n1)"

and build it with sqlite support

cargo build --features sqlite --release

cargo install diesel_cli --no-default-features --features sqlite-bundled

cd ..

"Install dependencies and fix some issues."

WEB-VAULT

clone the repository

git clone https://github.com/bitwarden/web.git web-vault

cd web-vault

switch to the latest tag, is not working here, dani-garcia/bw_web_builds lacks v2.12.0 patch
export WEB_VERSION="$(git tag --sort=v:refname | tail -n1)"
lets use the last working version

^^ use that `export` command instead of the below
export WEB_VERSION=v2.14.0

git checkout ${WEB_VERSION}

download and apply the bitwarden_rs patch

curl https://raw.githubusercontent.com/dani-garcia/bw_web_builds/master/patches/${WEB_VERSION}.patch
>${WEB_VERSION}.patch

git apply ${WEB_VERSION}.patch -v

there is no native freebsd version from node-sass 4.11, lets bump it to 4.12.0

cat package.json |sed -e 's/"node-sass": "^4.11.0",/"node-sass": "4.13.0",/' | tee package.json
I deleted a ^ and changed to 13, from the original write-up I found

download submodules

npm run sub:init

manually install angular/compiler-cli

Finally, Build the web-vault

"At this point we have every components and will have to put them together"

npm i @angular/compiler-cli

install all the other dependencies

npm install

sweetalert used to fail with the latest angular2, but it's been fixed

npm run dist

A 1G RAM VPS instance will run out of memory. Interestingly, it acted incapable of using the
swapfile, though I wonder if I could have forced it to.

I had to resize the droplet to get 2G of RAM, and then export NODE_OPTIONS=--
max_old_space_size=4096 (from within the bash shell). And then it works, right? Right.

cd

copy bitwarden_rs dist

cp -r ~/bitwarden_rs/target/release bitwarden_rs_dist

cd bitwarden_rs_dist

and copy the web-vault files

cp -r ../web-vault/build web-vault

Config
There are .env file settings to change. From bitwardenrs user's home dir:

Edit accordingly (remember, we chose a different data dir to null-fs mount).

Set up nginx.

cp bitwarden_rs/.env.template bitwarden_rs_dist/.env

Main data folder
 DATA_FOLDER=/var/db/data

{...}

Domain settings
DOMAIN=https://vault.mydomain.tld

su 		# be root

bash

create nginx.conf

cat << EOF >/usr/local/etc/nginx/nginx.conf
worker_processes auto;

events {
 worker_connections 1024;
}

http {
 include mime.types;
 default_type application/octet-stream;
 sendfile on;
 keepalive_timeout 6h;

#server {
 #listen 		80;
 #server_name vault.mydomain.tld;
 #return 301 https://$server_name$request_uri;
#}

server {

 listen 10.101.10.120:80;
 server_name vault.mydomain.tld;

 #ssl_session_cache builtin:1000 shared:SSL:10m;
 #ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 #ssl_ciphers HIGH:!aNULL:!eNULL:!EXPORT:!CAMELLIA:!DES:!MD5:!PSK:!RC4;
 #ssl_prefer_server_ciphers on;

 access_log /var/log/nginx/bitwarden_rs_web_vault.log;

 location / {
 proxy_set_header Host \$host;
 proxy_set_header X-Real-IP \$remote_addr;
 proxy_set_header X-Forwarded-For \$proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto \$scheme;

 proxy_pass http://10.101.10.120:8000;
 proxy_read_timeout 90;

 #proxy_redirect http://10.101.10.120:8000 https://10.101.10.120;
 }
 }
}
EOF

enable and start nginx

sysrc nginx_enable="YES"

nginx -t		# test

That's right. Just port 80. It's behind Caddy, remember?

"Create the bitwardenrs init script"

service nginx start

mkdir -p /usr/local/etc/rc.conf.d/

limit the rocket server only to localhost

echo "ROCKET_ADDRESS=10.101.10.120" >/usr/local/etc/rc.conf.d/bitwardenrs # changed to actual

cat <<EOF > /usr/local/etc/rc.d/bitwardenrs
#!/bin/sh

PROVIDE: bitwardenrs
REQUIRE: LOGIN DAEMON NETWORKING
KEYWORD: jail rust

Enable this script by adding:
bitwardenrs_enable="YES"
... to /etc/rc.conf

. /etc/rc.subr

name="bitwardenrs"
rcvar="bitwardenrs_enable"
bitwardenrs_chdir=/home/bitwardenrs/bitwarden_rs_dist
This is the tool init launches
command="/usr/sbin/daemon"

pidfile="/var/run/\${name}.pid"

This is the tool daemon launches
task="./bitwarden_rs"
procname="/bin/bash"

Adjust pf.conf to allow connections.
Just kidding! We're not touching PF. We've got caddy. Modify the Caddyfile in the caddy_jail. Add
the following:

command_args="-u bitwardenrs -p \${pidfile} \${task}"

load_rc_config $name
run_rc_command "\$1"
EOF

sudo sysrc bitwardenrs_enable="YES"

sudo chmod +x /usr/local/etc/rc.d/bitwardenrs

sudo service bitwardenrs start

Before going lower, be sure to create a CNAME record to catch vault.mydomain.tld . Done?
Let's proceed.

vault.mydomain.tld {

 gzip

 # The negotiation endpoint is also proxied to Rocket
 proxy /notifications/hub/negotiate 10.101.10.120:80 {
 transparent
 }

 # Notifications redirected to the websockets server
 proxy /notifications/hub 10.101.10.120:3012 {
 websocket
 }

 # Proxy the root directory to Rocket
 proxy / 10.101.10.120:80 {

Or is it encode gzip ? No, that's v2. Your welcome, future self.

Then reload caddy.

After Setup! Clean Up!
First, log onto your beautiful self-hosted, powered-by-rust password manager site, and set up an
account with an uncrackable password. Then...

And then restart the service or restart the jail. (If you just restart the service, you may be stuck in
the terminal, so I just restart the jail.) When you visit and try to sign up again with a new account,
it'll pretend to allow you, and then give you a failure warning.

Also, 2FA
Bitwarden-rs allows you to various methods of 2FA. The simplest and most common is an
Authenticator app. Do it right away.

References
Adapted from: https://www.ixsystems.com/community/threads/how-to-build-your-own-
bitwarden_rs-jail.81389/

More here:
https://www.reddit.com/r/Bitwarden/comments/dg78bi/building_selfhosted_bitwarden_via_bitwarde

 transparent
 }
}

bastille service caddy-jail caddy restart

This server is open to others to sign up and use. Go into the .env file and shut off new user
signups!

Controls if new users can register
 SIGNUPS_ALLOWED=false

https://www.ixsystems.com/community/threads/how-to-build-your-own-bitwarden_rs-jail.81389/
https://www.ixsystems.com/community/threads/how-to-build-your-own-bitwarden_rs-jail.81389/
https://www.reddit.com/r/Bitwarden/comments/dg78bi/building_selfhosted_bitwarden_via_bitwarden_rs/

n_rs/

Also: https://dennisnotes.com/note/20181112-bitwarden-server/ (Ubuntu, Docker, nginx, script
install, backup procedure)

https://www.reddit.com/r/Bitwarden/comments/dg78bi/building_selfhosted_bitwarden_via_bitwarden_rs/
https://dennisnotes.com/note/20181112-bitwarden-server/

Gitea Jail
This will be our very own, lightweight personal Github/Gitlab. And we'll do something pretty cool
with it later.

This should be easy by now, right? Now that it works, it sure looks short and easy...

Set up location of repos/db

Create the jail

Setup - pre-login
Run /usr/local/scripts/custom_cshrc git_jail to copy the .cshrc .

Setup - post-login
Log into console.

Download packages possibly needed. (Possibly with sqlite3 as well)

Create the folder where the nullfs mount will occur (for one of the two; the other was created by
installing gitea).

zfs create -o compress=lz4 -o atime=off zroot/data/git

zfs create -o compress=lz4 -o atime=off zroot/data/dbs/gitea

bastille create git_jail 12.1-RELEASE 10.101.10.150

bastille start git_jail

bastille console git_jail

pkg install -y git gitea vim-console

The chown command is probably premature. After the jail is restarted with the updated fstab , you
probably need to do it again (from within the jail), and it may need to be done for the other
directory (nullfs-mounted) in the fstab as well.

Exit the console.

Finishing setup touches
Stop the jail.

Edit the fstab of this thin jail to mount the git dataset.

For the db, we'll need to allow raw sockets. (Actually, probably not needed if using sqlite3 . Needed
for Mariadb though.)

And we'll start up the jail again.

May want to pop into the console now to change ownership (chown) of the "Device" entries from
the fstab .

Jail is ready for package setup
Sqlite3
I tried to pkg install it, but it said it was already there. No further setup should be necessary. I was
having issues at first, and I couldn't figure out the problem, so I ended up creating the db ahead of
time in case that was it. I don't think it was, and so creating the db ahead of time should not be

mkdir -p /usr/local/data/git

chown git:git /usr/local/data/git

bastille stop git_jail

Device Mountpoint FStype Options Dump Pass#
/usr/local/data/git /usr/local/bastille/jails/git_jail/root/usr/local/data/git nullfs rw,late 0 0
/usr/local/data/dbs/gitea /usr/local/bastille/jails/git_jail/root/var/db/gitea nullfs rw,late 0 0

echo 'allow.raw_sockets = "1";' >> /usr/local/bastille/jails/git_jail/jail.conf

bastille start git_jail

needed.

Gitea
Enable it.

Make a backup of the config file. First, log into the console.

Configure as necessary the /usr/local/etc/gitea/app.ini . (View the changes, but you can't make them
all yet. See below.)

bastille sysrc git_jail gitea_enable=YES

bastille console git_jail

cp /usr/local/etc/gitea/conf/app.ini /usr/local/etc/gitea/conf/app.ini.bak

#APP_NAME can be fun to change

[database]
< USER = root
> USER = git

[oauth2]
< JWT_SECRET = D56bmu6xCtEKs9vKKgMKnsa4X9FDwo64HVyaS4fQ...
> JWT_SECRET = HO8YPNfNkhB_-ESE5e637TQcbja0WylppIsiFdgm...

[picture]
DISABLE_GRAVATAR = true

[repository]
I copied (cp -a) the .gitconfig and .ssh file and dir from /usr/local/git (the default git home dir)
< ROOT = /var/db/gitea/gitea-repositories
> ROOT = /usr/local/data/git

I have this for later. I think I'll enable it, since I'm the only user.
> # Default is false. If true, user can create a repo by pushing local to remote (gitea)
> #ENABLE_PUSH_CREATE_USER = true

See below for how to use gitea's built-in secret tool to replace the existing ones.
[security]

What is shown above is that the secrets have already been updated. Here's how to do it.

Diff the new with the backup to make sure it looks right.

< INTERNAL_TOKEN = 1FFhAklka01JhgJTRUrFujWYiv4ijqcTIfXJ9o4n1fWxz+XVQdXhrqDTlsnD7fvz7g
< SECRET_KEY = ChangeMeBeforeRunning
> INTERNAL_TOKEN = eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuYmYiOjE1OTU2NDA4NjB9.oZEw2...
> SECRET_KEY = qVvCzqg4mqe2tQHmZfE99EvzADFvOMY9fO3BdTFw4vwcBVvfAdyxJyBL9Hg...

[server]
< DOMAIN = localhost
< HTTP_ADDR = 127.0.0.1
< ROOT_URL = http://localhost:3000/
> DOMAIN = gitea.mydomain.tld
> HTTP_ADDR = 10.101.10.150
> ROOT_URL = https://gitea.mydomain.tld:443/ # this is the "https clone address/port"
Note that internally, it's still listening on port 3000. ^^ that's for the clone button
< SSH_PORT = 22
> SSH_PORT = 40202 # this is the clone port for ssh

> START_SSH_SERVER = true # to make gitea manage ssh connections, instead of the host
> SSH_LISTEN_HOST = 10.101.10.150
> SSH_LISTEN_PORT = 22002 # non-root user can't listen on 22
> LANDING_PAGE = explore # this shows the repos, instead of a gitea advert

to prevent web registrations
[service]
< DISABLE_REGISTRATION = false
> DISABLE_REGISTRATION = true

sed -i .tmp 's/^JWT_SECRET.*=.*$/JWT_SECRET = '`gitea generate secret JWT_SECRET`'/g' \
/usr/local/etc/gitea/conf/app.ini

sed -i .tmp 's/^INTERNAL_TOKEN.*=.*$/INTERNAL_TOKEN = '`gitea generate secret INTERNAL_TOKEN`'/g' \
/usr/local/etc/gitea/conf/app.ini

sed -i .tmp 's/^SECRET_KEY.*=.*$/SECRET_KEY = '`gitea generate secret SECRET_KEY`'/g' \
/usr/local/etc/gitea/conf/app.ini

diff /usr/local/etc/gitea/conf/app.ini.bak /usr/local/etc/gitea/conf/app.ini

And get it running.

And check the status , just to make sure.

Wrapping up
You're about to update the reverse proxy, so you better have the CNAME record by now.

Update Caddyfile. (v1)

DigitalOcean firewall
Since we're using a jail, we defined a different SSH port that PF will forward to the jail. We need to
allow that port through the DigitalOcean firewall, in the Networking tab.

PF

As usual, test with pfctl -vnf /etc/pf.conf , and then remove vn if it's all good.

Create gitea user

Check file permissions for /var/log/gitea and /var/db/gitea . You may need to chown -R git:git . If it
doesn't work, also check /usr/local/data/git and ...

service gitea start

gitea.mydomain.tld {
 proxy / 10.101.10.150:3000
}

git_ssh = "40202"

gitea_jail = "10.101.10.150"

rdr pass inet proto tcp from any to any port $git_ssh -> $gitea_jail port 22002

su git

gitea admin create-user --username c00ldude --password 1234superpass \
--email username@gmailorwhatever.com --admin -c /usr/local/etc/gitea/conf/app.ini

Repeat that command if you want to create additional users (because you turned off web
registrations).

Log in to the web interface
You're ready to use the username and password to log in and start creating repos.

References
Used https://www.ccammack.com/posts/jail-gitea-in-freebsd/ for some help... but it was
incomplete...

Helpful stuff here too: https://docs.gitea.io/en-us/config-cheat-sheet/

https://www.ccammack.com/posts/jail-gitea-in-freebsd/
https://docs.gitea.io/en-us/config-cheat-sheet/

Website Jail w/ Git Power-up
Website via git
You created a jail for gitea. Of course you now want to use it to track website changes via git
version control. Every git push is a push into production, and that's cool! Let's roll with it. The
future is now.

Let's pretend you've done some basics. You've got gitea running, and you created a project in
gitea called 'website'. You git cloned it, and you have scp 'd the files from your website jail folder
to your local computer. You copied them into the repo, and you commited your changes, and
you're ready to push your changes, right? Perfect.

Let's get busy on the server...

As root in the host:

Now we need to create these directories in their /usr/local/data , stop the gitea and website jails,
update their fstab files, and restart the jails. Then make sure to set permissions (owned by git, by
readable by anyone).

First, with the gitea jail

exit

Edit fstab

zfs create -o compress=lz4 -o atime=off zroot/data/prod-website

bastille console git_jail

mkdir -p /usr/local/data/prod-website

bastille git_jail stop

/usr/local/data/prod-website /usr/local/bastille/jails/git_jail/root/usr/local/data/prod-website nullfs rw,late 0 0

bastille start git_jail

Before moving along, let's add the git hook.
(This is the magic)

Edit post-receive to include

Now double check you added those files locally and push to remote.
And it worked.

Next, with the website jail

Double check the location of the website. It's at /usr/local/www/mydomain.tld ... now...

Edit fstab

If I pop into the jail and run ll in /usr/local/www , I see that the git user owns the directory now, so it
appears it's complete...

But it's not. Nginx is looking too high. Gotta adjust the nginx conf. It needs to dig in another dir (
.../www/mydomain.tld/mydomain.tld). Maybe I'll decide on a more elegant (less nested) approach
later. For now, it works and is nice.

bastille console git_jail

cd /usr/local/data/prod-website && mkdir -p mydomain.tld && chown git:git mydomain.tld

cd /usr/local/data/git/git_username/website.git/hooks

WEBSITE_FOLDER="/usr/local/data/prod-website/mydomain.tld"
git --work-tree=$WEBSITE_FOLDER --git-dir=$GIT_DIR checkout -f master

bastille console website_jail

bastille stop website_jail

/usr/local/data/prod-website/mydomain.tld /usr/local/bastille/jails/website_jail/root/usr/local/www/mydomain.tld
nullfs rw,late 0 0

bastille start website_jail

Then a final service nginx reload (preceded by nginx -t , if you wanna be extra careful), and we're
good.

Mission Accomplished
That's right. As stated at the top, you can now do development at home, testing on your localhost
webserver, and then commit and push your changes whenever you're happy with them.

IRC!Radio by dsc_
IRC!Radio
IRC!Radio is a radio station for IRC channels. You hang around on IRC, adding YouTube songs to the
bot, listening to it with all your friends. Great fun!

Stack
IRC!Radio aims to be minimalistic/small using:

- Python >= 3.7
- SQLite
- LiquidSoap >= 1.4.3
- Icecast2
- Quart web framework

And all in a FreeBSD jail (in this case).

Command list

Installation

- !np - current song
- !tune - upvote song
- !boo - downvote song
- !request - search and queue a song by title or YouTube id
- !dj+ - add a YouTube ID to the radiostream
- !dj- - remove a YouTube ID
- !ban+ - ban a YouTube ID and/or nickname
- !ban- - unban a YouTube ID and/or nickname
- !skip - skips current song
- !listeners - show current amount of listeners
- !queue - show queued up music
- !queue_user - queue a random song by user
- !search - search for a title
- !stats - stats

“

The following assumes you have a VPS somewhere with root access (duh). It assumes you're using
bastille for the jail manager, and it assumes you have a caddy jail already set up for reverse proxy
and certs.

Before doing anything else, since we're on FreeBSD, create a jail. Notice that this is a thin jail with
no network interface specified, therefore it'll use the bastille0 cloned loopback device for its
network.

In my case, I have a custom .cshrc file to make the terminal nicer looking (and a script to copy it
into place).

The radio user will be doing a bunch of the heavy lifting. It needs its own /home directory.

An icecast user will be needed to run icecast , but it doesn't need its own /home directory.

Requirements
Part I - Everything except for liquidsoap , basically
Into the jail, as root:

First, might as well get onto the latest package repo.

Do a couple rounds of package installing. First, basics. Then specifics.

bastille create radio_jail 13.0-RELEASE 10.101.10.180

/usr/local/scripts/custom_cshrc.sh radio_jail

bastille cmd radio_jail pw adduser -n radio -m -d /home/radio -s /usr/local/bin/bash -c "radio user"

bastille cmd radio_jail pw adduser -n icecast -G wheel -d /nonexistent -s /usr/sbin/nologin -c "icecast"

bastille console radio_jail

mkdir -p /usr/local/etc/pkg/repos

echo 'FreeBSD: { url: 'pkg+http://pkg.FreeBSD.org/\$\{ABI\}/latest', enabled: yes }' >
/usr/local/etc/pkg/repos/FreeBSD.conf

pkg install -y bat htop git vim-console tmux

And because there is no liquidsoap in ports:

Part II - Use opam to install liquidsoap

Inside the jail, as the radio user, the majority of the rest will happen. Might as well get to the
/home directory.

Follow the instructions to make sure .profile is properly sourced.

And paste:

The compiler in the package repo is too old for what we need.

And the install command that won't work without the env vars (whether included in advance or
part of the command):

pkg install -y icecast py38-virtualenv libogg nginx ffmpeg sqlite3 py38-sqlite3 gmake bash

pkg install -y ocaml-opam libmad taglib libsamplerate pkgconf gavl fdk-aac

su radio

cd

opam init

vim .bashrc

source /usr/home/radio/.profile

opam switch create 4.12.0

opam install fdkaac gavl

opam depext taglib mad lame vorbis cry samplerate liquidsoap

C_INCLUDE_PATH=$C_INCLUDE_PATH:/usr/local/include
CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:usr/local/include LIBRARY_PATH=$LIBRARY_PATH:/usr/local/lib
opam install taglib mad lame vorbis cry samplerate ffmpeg liquidsoap

Clone and Setup
Still as radio user, still from from ~ :

The magic commands that will need to be run more than once (here, and then farther down, at the
end):

Adjust settings
Now that all the building blocks are in place:

Look at settings.py and configure it to your liking:

Change host listening address at the top to internal IP given to the jail, 10.101.10.180
Change timezone to America/New_York or whatever
Change irc_host from localhost to something like irc.oftc.net or irc.libera.chat or whatever
If you change irc_ssl to True , change the irc_port accordingly.
Change irc_nick , irc_channels , irc_realname , maybe irc_command_prefix
Change icecast2_hostname to your hostname , i.e, radio.example.com
Change the passwords under icecast2_
Change the liquidsoap_description to whatever

Lastly, edit ircradio/utils.py , and comment out all of liquidsoap_check_symlink() , and just make it pass .

git clone https://git.wownero.com/dsc/ircradio.git

cd ircradio/

virtualenv -p /usr/local/bin/python3.8 venv

source venv/bin/activate

pip install -r requirements.txt

cp settings.py_example settings.py

vim settings.py

Alternatively, you can run the generate command that follows, and then run find / -type f -
name lastfm.liq , and then as root put in a symlink so it will be able to find that file. But you'll
need a thick jail to be able to do this. And you'll need to repeat the three magic virtualenv
commands again.

When you are done, this will generate various initial configs (which we'll have to further edit):

The generate function writes icecast / liquidsoap / nginx configuration files into data/ .

Update configs
First, while still in the radio user's shell:

Then, exit out of radio and back to root . We'll need root shell for this section and the next. And if
needed:

liquidsoap

Where is liquidsoap ? We got that above. That needs to be the path at the top of the data/soap.liq
file. Paste it.

And while in there, comment out the row starting with full . In the final line, change full to radio .
This change will remove the crossfade function unfortunately. Maybe 1.4.4 changed that function.

Then liquidsoap also needs an rc file, rather than a system.d file.

python3.8 run.py generate

which liquidsoap

cd /home/radio/ircradio

vim data/soap.liq

TODO: figure out crossfading, cuz I want it

vim /usr/local/etc/rc.d/liquidsoap

#!/bin/sh

PROVIDE: liquidsoap
REQUIRE: DAEMON
BEFORE: LOGIN
KEYWORD: shutdown

Add the following line to /etc/rc.conf to enable `liquidsoap`.
#

And it needs to be made executable.

#liquidsoap_enable="YES"
#
To specify a non-default script file, set liquidsoap_script
in /etc/rc.conf:
#
#liquidsoap_script="/home/radio/ircradio/data/soap.liq"
#

. /etc/rc.subr

name="liquidsoap"
rcvar=liquidsoap_enable

#update as necessary, the command path
command="/usr/home/radio/.opam/4.12.0/bin/liquidsoap"
command_args="--daemon 1>/dev/null"
#command_args="--daemon --quiet"
extra_commands="reload"

read configuration and set defaults
load_rc_config "$name"
: ${liquidsoap_enable="NO"}
: ${liquidsoap_script="/home/radio/ircradio/data/soap.liq"}
: ${liquidsoap_flags="${liquidsoap_script}"}
: ${liquidsoap_user:=radio}
: ${liquidsoap_group:=radio}

required_files="${liquidsoap_script}"

run_rc_command "$1"

pushd /usr/local/etc/rc.d/

chmod +x liquidsoap

popd

Also, liquidsoap will want to create a pid near the build dir , and the user needs permissions...
(adjust as necessary).

nginx

For data/radio_nginx.conf , there needs to be the following at the very top:

And underneath that, the whole server block needs to be wrapped in an html {} block.

And change the listen port to whatever you'll forward to from caddy , like 8040 , though 80 should
be fine too.

icecast

Get into data/icecast.xml .

First, might as well adjust the location to a fun name and admin to any old email address.

I adjusted <burst-on-connect> to 1 and <hostname> to radio.example.come (the actual address).

The bottom of the file needs to have the user info in the security section, right under changeowner
subsection:

Change the paths to these, since the provided ones are for Linux.

mkdir -p /usr/home/radio/.opam/4.12.0/lib/liquidsoap/var/run/liquidsoap

pushd /usr/home/radio/.opam/4.12.0/lib/liquidsoap/var/run

chown radio:radio liquidsoap/

popd

vim data/radio_nginx.conf

events {}

vim data/icecast.xml

	<changeowner>
 <user>icecast</user>
 <group>icecast</group>
	</changeowner>

When starting the service, there will be an annoying "error" if we don't have this file *rolls eyes*...

One more thing for this. For icecast to work, it needs to be able to do what you tell it, like logging...

Final Tidying Up
Still as root ...

And we can enable the services..

And start them (and ultimately this will hopefully illuminate if any errors were made above).

 <paths>
		<basedir>/usr/local/share/icecast</basedir>
 <logdir>/var/log/icecast/</logdir>
		<webroot>/usr/local/share/icecast/web</webroot>
		<adminroot>/usr/local/share/icecast/admin</adminroot>
 </paths>

touch /etc/mime.types

pushd /var/log

mkdir /var/log/icecast

chown -R icecast:icecast /var/log/icecast

chmod -R 760 /var/log/icecast

popd

cp /home/radio/ircradio/data/icecast.xml /usr/local/etc/

cp /home/radio/ircradio/data/radio_nginx.conf /usr/local/etc/nginx/nginx.conf

sysrc liquidsoap_enable="YES"

sysrc nginx_enable="YES"

sysrc icecast_enable="YES"

Set Up Host & Caddyfile (and cname
record)
Hopefully the host doesn't need anything, actually.

Before getting to caddy , hop into your domain registrar and add a cname for the hostname desired,
in this case radio . It may take a little while for the new record to propogate.

Then hop into the Caddyfile and add a section for radio.domain.tld , and reverse proxy to the jail and
the listen port from the top of nginx.conf .

And then we are ready to finish up.

Start It!
From the jail console, start a new tmux session.

Change user and get to the repo directory.

Run the three magical virtualenv steps.

Run the thing:

service icecast start

service liquidsoap start

service nginx start

tmux

su radio

cd

cd ircradio/

python3.8 run.py webdev

Then hop onto IRC and download a few songs! Then either the music will start playing, or you can
restart liquidsoap with root .

Other
There are html files for the webpage inside ircradio/templates . Perhaps you'd like to adjust the files
to customize it a bit and maybe indicate that you stole this setup from from someone else and it's
really their hard work that made it possible.

Resources
https://git.wownero.com/dsc/ircradio

https://git.wownero.com/dsc/ircradio

