
More Legwork -
Backups

Backups Overall
BookStack Backup

Backups Overall
We haven't gone into backups yet. Maybe we should. In general, writing a script to dump a
database, tar files, etc, is not rocket science (though it's a bit tedious to set up). The trickiest part
in any of these is getting the backed-up files to a different machine.

Host
We actually haven't done a whole heck of a lot to the host. Certainly, we've got an rc.conf and a
pf.conf . We've also got a script and a cron entry. We'll be adding more scripts (backup scripts)
and more cron entries. And we've potentially got data directories on the host as well, considering
we'll probably cp / tar files into some backup directory first (which we can then ZFS snapshot!)
before then scp 'ing to remote machine.

Bookstack
This one is semi-tricky, but actually not bad. You must use the correct credentials to dump the
database to a file, and you must grab a few additional directories that are resources used by the
database but not actually saved inside it.

Website
If you're using Gitea to populate the website's document root, then perhaps backing up Gitea will
suit your needs. And in that case, you also most likely have a local copy of the git repository
working tree, so you can already repopulate the document root in a pinch.

Whether or not you're using Gitea/ git , it's generally a simple task to tar up the document root
directory and scp it to a remote machine.

Gitea
There are several ways to look at backing this up depending on how you're using it.

Standalone
If you're reliant solely on Gitea, then you should back things up. There are two directories and a
file.

git home
This stores the *.git directories containing the commit history and whatnot. It feels weird to tar
these up when they can easy be cloned by conventional means. Choose your poison.

Database
This category consists of the db itself as well as some accompanying files and directories. The db
contains the website configuration, including users. Backing this up will depend on the type of
database. I used sqlite , which is not authenticated. The process for mariadb and others would be
different, though you can follow the procedure used for BookStack, since that uses mariadb .

{..}/app.ini
These are the runtime parameters.

Mirrors
If you're using Gitea to mirror a website from Github or Gitlab (or wherever), then there isn't much
of a need for a backup because you can just recreate the Gitea repo from the repo you're
mirroring.

If you're using Github (or wherever) to mirror Gitea, then... you still don't have much to worry
about. The reason for this (though I don't know if it applies outside of Github) is that Github does
not allow you to mirror external repos. So if you're using Github to mirror Gitea, you have
accomplished this by adding a post-receive hook to your Gitea repo that pushes the changes
automatically to Github. So in this case too, you can restart the Gitea repo by importing the Github
repo. However, it may make sense to back up your keys, considering you had to provide
authorization for Gitea to push to Github, so there may be an SSH key that you'd want to just put
back into Gitea rather than creating a new key pair and loading the newly created pubkey into
Github.

Bitwarden
There's actually not much to this. You can look at their recommendations here:
https://github.com/dani-garcia/bitwarden_rs/wiki/Backing-up-your-vault which basically come down

https://github.com/dani-garcia/bitwarden_rs/wiki/Backing-up-your-vault

to running sqlite3 db > backup and saving your icons.

Caddy
No backup needed, really. I mean, in its current state, it'd take two seconds to replace. The more
you add to it, the more you maybe want to copy a backup of the Caddyfile somewhere, but that's
about it.

BookStack Backup
Here's a script for backing up everything you need in the event you want to rebuild the jail and
bring the existing BookStack data to the new jail.

It takes no arguments. You simply set the correct variables inside, and it just works™. Here's how:

1. It checks whether the root backup directory exists. If it doesn't, it creates it.
2. It checks whether the subdirectory (based on the date) exists. If it doesn't, it creates it.
3. It cd 's to where you'll temporarily store the database dump (after making sure it exists).
4. It dumps the database into a file of the name you specify (which isn't important).
5. It cd 's to the subdirectory where the backup files will be saved.
6. It checks whether the dump file already exists (in case you already backed up today).

1. If you didn't already back up today, it moves the db dump there.
2. If you did already back up, it prepends a count to the file name first, as to not

overwrite the previous.
7. Next, it cd 's into the BookStack directory and tar s the remaining files and directories.
8. Lastly, it copies the tar ed file to the backup subdirectory.

Before implementing this script, we need to set up the backup directory.

Now we can create the script to run from the host that will dump the db, tar the add'l resources,
and save them in the directory we just created. From the host:

zfs create -o compress=lz4 -o atime=off zroot/data/backups

zfs create -o compress=lz4 -o atime=off zroot/data/backups/bookstack

cd /usr/local/scripts

vim backup_bookstack.sh

#!/bin/sh

Exit script if error (non-zero return code)
set -e

Variables to be used
jail=bs_jail
jail_dir="/usr/local/bastille/jails/$jail/root"

db=db_bs
DUMP="$db.dmp"
NOW=$(date +"%Y-%m-%d")
bk_root="/usr/local/data/backups/bookstack"
bk_dir="$bk_root/$NOW"
scripts_dir="/usr/local/scripts"
tmp_dmp_dir="${scripts_dir}/tmp"
bs_dir="${jail_dir}/usr/local/www/bookstack"
bs_files="bookstack-files-backup.tar.gz"

mv_it() {
 FILE=$1
 SOURCE_DIR=$2
 COUNT=$3

 if [! -f "$COUNT.${FILE}"]; then
 cd $SOURCE_DIR
 mv ${FILE} ${bk_dir}/$COUNT.${FILE}
 else
 COUNT=`expr $COUNT + 1`
 mv_it $FILE $SOURCE_DIR $COUNT
 fi
}

Create destination root dir and sub dir

if [! -d "${bk_root}"]; then
 mkdir ${bk_root}
fi

if [! -d "${bk_dir}"]; then
 mkdir ${bk_dir}
fi

Prepare to export; dump to tmp dir

cd "${tmp_dmp_dir}"

Within the jail (via bastille), dump MariaDB db to file

(substitue 'secret' w/ the password of the backup user) (w/ no space after the -p)

bastille cmd $jail mysqldump --single-transaction -u backup -psecret $db > $DUMP

Move (and rename) the file from the current dir to the backup dir

COUNT_D=0

cd $bk_dir

if [! -f "${DUMP}"]; then
 cd $tmp_dmp_dir
 mv $DUMP $bk_dir
else
 mv_it $DUMP $tmp_dmp_dir $COUNT_D
fi

Tar the unrecoverable, install-specific files

cd $bs_dir
tar -czf $bs_files .env public/uploads storage/uploads

Move to backup dir

COUNT_F=0

cd $bk_dir

if [! -f "${bs_files}"]; then
 cd $bs_dir
 mv $bs_files $bk_dir
else
 mv_it $bs_files $bs_dir $COUNT_F
fi

Write to log briefly what happened

echo "$NOW - Dumped $db, tar'ed files, saved to $bk_dir" >> ${scripts_dir}/Scripts.log

And it needs to be executable.

Notes:

1. If you named the jail something other than 'bs_jail' then adjust the variable value.
2. Adjust the db name from 'db_bs' to whatever your db's name is.
3. I set bk_root to what we just created ZFS datasets for.
4. This will be saved in /usr/local/scripts . Feel free to save it elsewhere.
5. Create a /tmp inside /usr/local/scripts (or your chosen dir), to be used temporarily by the

script.
6. If your BookStack installation isn't in /usr/local/www/bookstack , then adjust accordingly.
7. This is just the name of the resources that get tar 'ed. Name it whatever you want.

Also:

From the host, we log into mysql (mariadb).

Then we create the user.

Now you can run this and see the results. You may want to run a cron job (though bear in mind
that a single cron job to back up BookStack will just grow over time, so you should also create a
script to only keep the newest so many and purge the rest).

exit 0

chmod 755 backup_bookstack.sh

We're using decent hygiene here. The user that is performing the db dump only has access
to perform that one function (pretty much). You must create it and give it that privilege.
Like so...

bastille cmd bs_jail mysql -u root -p

CREATE USER 'backup'@'localhost' IDENTIFIED BY 'secret';	# where backup is user and secret is password
GRANT SELECT, SHOW VIEW, RELOAD, REPLICATION CLIENT, EVENT, TRIGGER ON *.* TO 'backup'@'localhost';
FLUSH PRIVILEGES;
exit;

