
FreeBSD 12.1 ZFS
On DigitalOcean
Basic setup for FreeBSD w/ jails using Bastille in a DigitalOcean droplet, including reverse proxy jail,
gitea, bitwarden-rs, a website, and Bookstack.

Legwork

Initial Steps
Initial Login
Jail Preparation/Setup

Fun Stuff

BookStack Jail
Website Jail
Caddy Jail

More Fun Stuff

Bitwarden-rs Jail
Gitea Jail
Website Jail w/ Git Power-up
IRC!Radio by dsc_

More Legwork - Backups

Backups Overall
BookStack Backup

More Legwork - Upgrading Versions

Upgrade From 12.1- to 12.2-RELEASE

Legwork

Legwork

Initial Steps
Domain
It was high time that I "owned" part of the internet, so I went on NameCheap.com and "bought" two
URLs. I went with the WhoisGuard feature, and I set the domain registrations for auto-renewal.

VPS
I then registered w/ DigitalOcean and provided my credit card. Now I am ready to roll.

I started a new project on DigitalOcean, and created a new droplet. I selected FreeBSD 12.1 w/ ZFS
(could also choose 11.3, and could choose UFS or ZFS, but ZFS is great, and I know I'll wish I had it
once I get a little more advanced). I went with the $5/mo plan (1 vCPU, 1 GB RAM, 25GB SSD). I
was not provided a root password. Instead, I had to provide an SSH pubkey. All the better.

VPS Setup
It would be wise to pop into the Networking tab and create a basic firewall for the droplet. I chose
to accept https , http , and SSH , all on default ports. FreeBSD doesn't have a firewall running out
the box, so this step is probably wise.

Domain Setup
Shortly after creating the droplet, I brought the newly acquired IP address over to NameCheap and
created A records.

Created an A record for the domain where the host is simply @ , meaning mydomain.tld
will work as is.
Created an A record for the domain where the host is www , so www.mydomain.tld will also
work.
Left in place, for now, the CNAME record to the NameCheap parking page. (I should have
probably deleted right away.)
Also left in place, for now at least, the URL redirect for the host @ to www.mydomain.tld. I
need to research this.

All Done

http://www.mydomain.tld
http://www.mydomain.tld

Well, not so fast. DigitalOcean and NameCheap both have the ability to enable 2FA. Maybe you
should get that out of the way before you get too far. I did.

It's almost time to get various jails set up and piped into a reverse proxy (another jail), and then
have CNAME records created for pointing subdomains (a subdomain for each jail) at the droplet's
IP. You do the CNAME records in the Advanced DNS screen of the NameCheap site.

At this point, there's not much left to do but log in to the server. I tried ssh root@mydomain.tld
right away, and it didn't work, and I had to use the IP address. But after a little while, it worked
fine. DNS is fun, right?

mailto:root@mydomain.tld,

Legwork

Initial Login
Upon SSH'ing into the server, I am greeted w/ a cold black and white terminal. Excellent.

Housekeeping
Before moving forward, let's get the system up to date and grab a few packages we'll need
momentarily.

I was tempting to install curl and wget , but those are covered with fetch , which is part of the
FreeBSD base system.

Get the clock up to date, just in case it's not.

For the host, you'll probably want to make sure you select the timezone where the VPS is located.

Enable the time service.

And then might as well start it now.

What are we working with here (supposedly a 25G SSD, right?)... lsblk reveals:

freebsd-update fetch install

pkg update && pkg upgrade -y

pkg install -y git nano tmux vim-console lsblk

tzsetup

sysrc ntpd_enable="YES"

sysrc ntpd_sync_on_start="YES"

service ntpd start

Running swapinfo -h confirms the swap space.

Quality of Life
I prefer to freshen up the .cshrc file. Here's the original.

DEVICE MAJ:MIN SIZE TYPE LABEL MOUNT
vtbd0 0:69 25G GPT - -
 vtbd0p1 0:71 256K freebsd-boot gptid/fe84c375-529c-11ea-... -
 vtbd0p2 0:72 2.0G freebsd-swap gpt/swap0 -
 vtbd0p3 0:89 23G freebsd-zfs gpt/disk0 <ZFS>

$FreeBSD: releng/12.1/bin/csh/dot.cshrc 338374 2018-08-29 16:59:19Z brd $
#
.cshrc - csh resource script, read at beginning of execution by each shell
#
see also csh(1), environ(7).
more examples available at /usr/share/examples/csh/
#

alias h history 25
alias j jobs -l
alias la ls -aF
alias lf ls -FA
alias ll ls -lAF

A righteous umask
umask 22

set path = (/sbin /bin /usr/sbin /usr/bin /usr/local/sbin /usr/local/bin $HOME/bin)

setenv EDITOR vi
setenv PAGER less
setenv BLOCKSIZE K

if ($?prompt) then
 # An interactive shell -- set some stuff up
 set prompt = "%N@%m:%~ %# "

And then I added some things, mostly inside the if block:

 set promptchars = "%#"

 set filec
 set history = 1000
 set savehist = (1000 merge)
 set autolist = ambiguous
 # Use history to aid expansion
 set autoexpand
 set autorehash
 set mail = (/var/mail/$USER)
 if ($?tcsh) then
 bindkey "^W" backward-delete-word
 bindkey -k up history-search-backward
 bindkey -k down history-search-forward
 endif

endif

if ($?prompt) then

 #set prompt = "%N@%m:%~ %# "	# comment this out, and replace it below

 # colors for prompt (0 for regular and 1 for bold, or use %B%b for bold)
	set red="%{\033[0;31m%}"
	set green="%{\033[0;32m%}"
	set yellow="%{\033[0;33m%}"
	set blue="%{\033[0;34m%}"
	set magenta="%{\033[0;35m%}"
	set cyan="%{\033[0;36m%}"
	set white="%{\033[0;37m%}"
	set end="%{\033[0m%}" # This is needed at the end... :(

	# Set username color. (Preferably, unique)
	if ($USER == "root") then
	 set user_color="${yellow}"
	else
	 set user_color="${magenta}"
	endif

Turn off the mail notifications
Add the following to /etc/rc.conf , whether pasting or by sysrc .

Security
More remote user access
I've got two local computers. I pasted my other comp's SSH pubkey in a shared file where this
comp could copy it, and then I pasted it into .ssh/authorized_keys . Now both computers can SSH in.

	# prompt vars
	set name = "${user_color}%B%n%b${end}"
	set host = "${cyan}%m${end}"
	set dir = "${red}%~${end}"

	set prompt = "[${name}@${host}:${dir}]%# "

	set complete = enhance

	# Clean up...
	unset red green yellow blue magenta cyan white end
	unset name host dir

endif

color in autocomplete
set color
color in ls
alias ls ls -G

BSD colors for ls. See https://geoff.greer.fm/lscolors/
setenv LSCOLORS gxfxcxdxbxegedabagacad

sendmail_enable="NO"
sendmail_submit_enable="NO"
sendmail_outbound_enable="NO"
sendmail_msp_queue_enable="NO"

Sweet.

SSH authentication
We may want to clean up the /etc/ssh/sshd_config by disallowing password logins. That particular
setting is already set to 'no' but there are other things, like ChallengeResponseAuthentication and
UsePAM which could also be set to 'no' (for a belt-and-suspenders approach, as they say).

System users
The default user is the root user. To continue the belt-and-suspenders approach theme, we could
create a user for me (in the wheel group and operator group) and then disable root SSH login as
well. Smart. But I'm skipping that.

Root password
More belt-and-suspenders - we could/should add a root password. Very smart. Why am I skipping
this?

Obscurity
We could change the default listening port. This will decrease the noise, but is it really worth it? I
mean, once the server is set up, you can just block SSH via the DigitalOcean firewall. It's like 2FA
in that regard... sorta. Also inconvenient though.

Blocking bots
We could/should install Fail2Ban. Maybe later. For now (a bit below), we'll implement basic, built-
in brute force protection.

Firewall
Here's how we're starting off with /etc/pf.conf :

macros -> tables -> options -> traffic normalization -> queueing -> translation (NAT) -> packet filtering

MACROS

the external network interface to the internet
ext_if="vtnet0"
ext_if_ip="YOUR.NEW.IP.HERE"

port on which sshd is running
ssh_port = "22"

allowed inbound ports (host services)
don't include ports that'll be redirected to jails
#inbound_tcp_services = "{auth, " $ssh_port " }"
#inbound_udp_services = "{dhcpv6-client}"
web_services = "{http, https}"

jail IP addresses
#caddy_ip = "10.101.10.100"
#bookstack_ip = "10.101.10.110"

TABLES

table <bruteforce> persist
table <webcrawlers> persist
table <rfc6890> { 0.0.0.0/8 10.0.0.0/8 100.64.0.0/10 127.0.0.0/8 169.254.0.0/16 \
172.16.0.0/12 192.0.0.0/24 192.0.0.0/29 192.0.2.0/24 192.88.99.0/24 \
192.168.0.0/16 198.18.0.0/15 198.51.100.0/24 203.0.113.0/24 \
240.0.0.0/4 255.255.255.255/32 }
jails table is used by Bastille
table <jails> persist

OPTIONS

politely send TCP RST for blocked packets. The alternative is
"set block-policy drop", which will cause clients to wait for a timeout
before giving up.
set block-policy return

log only on the external interface
set loginterface $ext_if

skip all filtering on localhost
set skip on lo

TRAFFIC NORMALIZATION

reassemble all fragmented packets before filtering them
scrub in on $ext_if all fragment reassemble max-mss 1440

TRANSLATION

NAT out jail traffic
nat pass on $ext_if from <jails> to any -> $ext_if_ip

static port forwarding for http/https traffic to [reverse proxy] jail
#rdr pass inet proto tcp from any to any port {80, 443} -> $caddy_ip

PACKET FILTERING

block forged client IPs (such as private addresses from WAN interface)
antispoof quick for $ext_if

skip rfc6890 on external interface
block in quick on egress from <rfc6890>
block return out quick on egress to <rfc6890>

default behavior: block all traffic
block all

allow all icmp traffic (like ping)
pass quick on $ext_if proto icmp
pass quick on $ext_if proto icmp6

special pass rules for SSH
pass in quick on $ext_if proto tcp to port $ssh_port \
 keep state (max-src-conn 6, max-src-conn-rate 4/10, \
 overload <bruteforce>)

special pass rules for http/https (NOT SURE ABOUT THIS W/ REVERSE PROXY)
#pass in on $vtnet0 proto tcp to port { 80 443 } \
keep state (max-src-conn 45, max-src-conn-rate 9/1, \
overload <webcrawlers> flush global)

allow incoming traffic to services hosted by this machine (to the host; not jails)
#pass in quick on $ext_if proto tcp to port $inbound_tcp_services
#pass in quick on $ext_if proto udp to port $inbound_udp_services

allow all outgoing traffic
pass out quick on $ext_if

There's some nice foreshadowing in there.

There's a lot going on in that file. Here's a quick rundown:

1. Macros are for expanding into the rules below. Additionally, they make it so you can have
rules that don't change between systems because you just have to update the macros for
the system-specific variables.

2. Some of the macros are commented out for now. We may add them later. For now, this
is all we need.

3. A table is kind of like a macro, but not really. For one, they don't expand out in the shell's
variable substitution (which you'll see with pfctl -vnf /etc/pf.conf). They behave that way
though, where a rule applies to every IP address or range in the table. The bruteforce and
webcrawler tables are for keeping track of IP's that abuse the server. The rfc6890 table is
for IP's that we should never encounter anyway. The jails table is populated by Bastille
(the jail/container manager we'll be using, which we'll talk more about later), and it
contains all the Bastille jail IP's.

4. The options generally are already commented (not commented out... literally commented,
so go read them).

5. The NAT rule (in combination with gateway_enable in /etc/rc.conf) allows jail traffic to pass
out through the external interface and appear to come from the server's IP rather than the
otherwise un-routeable jail's IP.

6. The rest is either commented, self-explanatory (perhaps with research), or commented on
below.

Double check that the syntax is good and appears correct.

Assuming no errors, now it can be enabled.

And then, finally, PF can be started, which will boot us from our SSH session(s).

It is wise to enable logging too. Besides, we'd need to parse the logs for Fail2Ban. (Can it parse
binary logs?)

The data in the pflog file is written in binary, so one way to view it is:

pfctl -vnf /etc/pf.conf

sysrc pf_enable="YES"

service pf start

sysrc pflog_enable="YES"

tcpdump -ner /var/log/pflog

May also want to install pftop .

PF Tables
We're getting brute force protection w/ a bruteforce table. This is already included above.

We'll periodically empty/clear the bruteforce table (since brute forcing tends to not happen from the
same IP for long periods of time), so we'll write a shell script to do this for us.

In the script, we'll keep the IP's that have been around for 2 weeks or less, and flush/expire all else.

table <bruteforce> persist
table <webcrawlers> persist
table <rfc6890> { 0.0.0.0/8 10.0.0.0/8 100.64.0.0/10 127.0.0.0/8 169.254.0.0/16 \
172.16.0.0/12 192.0.0.0/24 192.0.0.0/29 192.0.2.0/24 192.88.99.0/24 \
192.168.0.0/16 198.18.0.0/15 198.51.100.0/24 203.0.113.0/24 \
240.0.0.0/4 255.255.255.255/32 }

{...}

skip rfc6890 on external interface
block in quick on egress from <rfc6890>
block return out quick on egress to <rfc6890>

{...}

special pass rules for SSH
pass in quick on $ext_if proto tcp to port $ssh_port \
 keep state (max-src-conn 6, max-src-conn-rate 4/10, \
 overload <bruteforce>)
 # the very end could have 'flush global', but I'd risk ending my
 # own connection if I accidentally triggered it

could do a similar rule for http/https using <webcrawlers>

vim /usr/local/bin/clear_overload.sh

#!/bin/sh

pfctl -t bruteforce -T expire 1209600

It needs to be executable.

And then we put it in a cron job to run every first day of the week on the zeroth minute of 2am
(with crontab -e).

Other Config
It's worth looking at the /etc/rc.conf . It comes like this:

chmod 755 /usr/local/bin/clear_overload.sh

minute hour mday month wday command

 0 2 * * 1 /usr/local/bin/clear_overload.sh

hostname="freebsd-hostname"
cloudinit_enable="YES"
sshd_enable="YES"
ifconfig_vtnet0="DHCP"
digitaloceanpre="YES"
digitalocean="YES"
zfs_enable="YES"

DigitalOcean Dynamic Configuration lines and the immediate line below it,
are removed each boot.

DigitalOcean Dynamic Configuration
defaultrouter="YOUR.NEW.IP.HERE"
DigitalOcean Dynamic Configuration
ifconfig_vtnet0="inet YOUR.NEW.IP.HERE netmask 255.255.240.0"
DigitalOcean Dynamic Configuration
ifconfig_vtnet0_alias0="inet 10.10.0.5 netmask 255.255.0.0"
DigitalOcean Dynamic Configuration
ifconfig_vtnet0_ipv6="inet6 2604:A880:0400:00D0:0000:0000:1B07:F001 prefixlen 64"
DigitalOcean Dynamic Configuration
ipv6_defaultrouter="2604:A880:0400:00D0:0000:0000:0000:0001"
DigitalOcean Dynamic Configuration
ipv6_activate_all_interfaces="yes"

And we have added:

And we'll soon be adding (more foreshadowing!):

Bonus Round
I've been using vim more than usual during this process.

1. It would be helpful to begin to put together a config file (.vimrc).
2. It would be wise to add it to my custom_cshrc.sh script, so I have it in jails too. (More

foreshadowing!)

Anywoo, this is still a todo.

ntpd_enable="YES"
ntpd_sync_on_start="YES"

sendmail_enable="NO"
sendmail_submit_enable="NO"
sendmail_outbound_enable="NO"
sendmail_msp_queue_enable="NO"

pf_enable="YES"
pflog_enable="YES"

bastille_enable="YES"
cloned_interfaces="lo1"
ifconfig_lo1_name="bastille0"
gateway_enable="YES"

Legwork

Jail Preparation/Setup
Filesystem
We'll want a dataset to store data that will exist outside the jails. Yay for ZFS (for reasons I'm
glossing over...).

(Did I have to create /usr/local/data before doing the above? I don't recall... but I'm pretty sure no.)

We expect to have a BookStack jail, which has a database.

And we can have a dataset for the BookStack db, specifically.

We'll get to this later, but now (later) we can nullfs -mount the dataset inside the jail (in its fstab)
like so:

And in case you jump ahead, you'll also need to know that mysql needs to own the directory.

Speaking of jumping ahead... I had issues when using a newer version of MariaDB a few months
later. The MariaDB setup might need more to get it working. It may have to do with changes to
Mysql.

Jail Management

zfs create -o compress=lz4 -o atime=off -o mountpoint=/usr/local/data zroot/data

zfs create -o compress=lz4 -o atime=off zroot/data/dbs

zfs create -o compress=lz4 -o atime=off zroot/data/dbs/bookstack

Device Mountpoint FStype Options Dump Pass#
/usr/local/data/dbs/bookstack /usr/local/bastille/jails/bs_jail/root/var/db/mysql nullfs rw,late 0 0

cd /usr/local/data/dbs/
chown -R 88:88 bookstack/

It's tempting to manage jails by hand, but I'll leave that exercise to my local server. We'll use this
script-based tool instead.

We want the Bastille jails to start up upon system reboot, so we add it to the rc.conf file.

And we can hop right into the Bastille configuration that defines the jails' default parameters.

The notable changes are:

Something of note is it uses a particular loopback device that must be created (added to rc.conf) .

And since the jails are on a separate loopback network and need to be NAT'd, we probably need
this:

And then the cloned interface can be brought up.

We would then update pf.conf accordingly to allow jail traffic if the example we started with didn't
already have this.

pkg install bastille

sysrc bastille_enable=YES

vim /usr/local/etc/bastille/bastille.conf

bastille_zfs_enable="YES"
bastille_zfs_zpool="zroot"

bastille_jail_addr="10.101.10.10" # not sure if this is even used or makes sense

sysrc cloned_interfaces+=lo1

sysrc ifconfig_lo1_name="bastille0"

sysrc gateway_enable="YES"

service netif cloneup

table <jails> persist

{...}

Base Jail
(For creating quickly update-able thin jails later)
It's pretty simple to create the base jail. This will download a fresh base install, basically.

You'll want to occasionally update this with:

We should now be ready to create jails.

(On a 25G instance, ZFS list currently reflects there is 16.8G remaining space.)

Initial Jail Creation
More foreshadowing!

Usage: bastille create [option] name release ip [interface].

Options - Empty, Thick, VNET (none of these)

Interface - vtnet (no!), bastille0 (yes, but implied)

nat on $ext_if from <jails> to any -> $ext_if_ip

static port forwarding for sending http/https to [reverse proxy] jail
rdr pass inet proto tcp from any to any port {80, 443} -> 10.17.89.45

When searching online, you may find that NAT rules end with -> ($ext_if) , but that will
include all aliases, which will make the NAT-ting most likely not behave as intended. You
want to NAT on the external IP (-> $ext_if_ip).

bastille bootstrap 12.1-RELEASE

bastille bootstrap 12.1-RELEASE update

bastille create caddy_jail 12.1-RELEASE 10.101.10.100

bastille create bs_jail 12.1-RELEASE 10.101.10.110

bastille create bw_jail 12.1-RELEASE 10.101.10.120

And after creating five thin jails, the remaining space is still 16.8G. Yay, ZFS, again!

Quick quality of life improvement in the
jails
Let's create a .cshrc for copying into the jails. It's the same as the regular one, but it uses different
prompt colors.

bastille create thelounge_jail 12.1-RELEASE 10.101.10.130

bastille create website_jail 12.1-RELEASE 10.101.10.140

$FreeBSD: releng/12.1/bin/csh/dot.cshrc 338374 2018-08-29 16:59:19Z brd $
#
.cshrc - csh resource script, read at beginning of execution by each shell
#
see also csh(1), environ(7).
more examples available at /usr/share/examples/csh/
#

alias h history 25
alias j jobs -l
alias la ls -aF
alias lf ls -FA
alias ll ls -lA

A righteous umask
umask 22

set path = (/sbin /bin /usr/sbin /usr/bin /usr/local/sbin /usr/local/bin $HOME/bin)

setenv EDITOR vi
setenv PAGER less
setenv BLOCKSIZE K

if ($?prompt) then
 # An interactive shell -- set some stuff up

 # colors for prompt (0 for regular and 1 for bold, or use %B%b for bold)
 set red="%{\033[0;31m%}"
 set green="%{\033[0;32m%}"
 set yellow="%{\033[0;33m%}"
 set blue="%{\033[0;34m%}"
 set magenta="%{\033[0;35m%}"
 set cyan="%{\033[0;36m%}"
 set white="%{\033[0;37m%}"
 set end="%{\033[0m%}" # This is needed at the end... :(

 # prompt vars
 set name = "${red}%B%n%b${end}"
 set host = "${red}%m${end}"
 set dir = "${cyan}%~${end}"

 set prompt = "[${name}@${host}:${dir}]%# "

 #set prompt = "%N@%m:%~ %# "
 set promptchars = "%#"

 set complete = enhance

 set filec
 set history = 1000
 set savehist = (1000 merge)
 set autolist = ambiguous
 # Use history to aid expansion
 set autoexpand
 set autorehash
 set mail = (/var/mail/$USER)
 if ($?tcsh) then
 bindkey "^W" backward-delete-word
 bindkey -k up history-search-backward
 bindkey -k down history-search-forward
 endif

 # Clean up...
 unset red green yellow blue magenta cyan white end
 unset name host dir

Then mv each jail's .cshrc as .cshrc.orig , and then cp the .cshrc.jail as each jails's new
/root/root/.cshrc . See below for a script to do this quickly and easily.

Other Bits
It may be a good time to reboot the server. You've made several changes to the system, and you'll
want to make sure they stuck and are working correctly.

Changes to /etc/pf.conf require pfctl -f /etc/pf.conf **. Changes to /etc/rc.conf require... something.
Changing the .cshrc requires sourcing it or logging in fresh. The jails need to be started.
Rebooting will do all this, including starting the jails.

** Just make sure you at least have already run pfctl -vnf /etc/pf.conf to make sure the config works.

Common Initial Jail Setup
The beginning steps are mostly the same across the jails. Before jumping in, if you haven't
already, remember to mv the jail's .cshrc as .cshrc.orig , and then cp the host's .cshrc.jail as the
jails's new /root/root/.cshrc .

In fact, here's a script (that magically worked perfectly the first time I ran it), that I just saved in
/usr/local/scripts .

endif

color in autocomplete
set color
color in ls
alias ls ls -G

LS colors, made with https://geoff.greer.fm/lscolors/
setenv LSCOLORS gxfxcxdxbxegedabagacad

#!/bin/sh

Copies custom .cshrc from /root/.cshrc.jail in place of the
jail's default .cshrc, and renames the default as .cshrc.orig.

Exit script if error (non-zero return code)
set -e

check for a single arg (the name of the jail)
if ["$#" -ne 1]; then
 echo "Usage: $0 JAIL_NAME" >&2
 exit 1
fi

Variables to be used
jail_name="$1"
jails_dir="/usr/local/bastille/jails"
jail_dir="${jails_dir}/${jail_name}/root/root"

check that the directory exists
if [! -d "${jail_dir}"]; then
	echo "Directory ${jail_dir} doesn't exist." >&2
	exit 1
fi

check that the original .cshrc exists
if [! -f "${jail_dir}/.cshrc"]; then
	echo "File ${jail_dir}/.cshrc doesn't exist." >&2
	exit 1
fi

check that the custom .cshrc exists
if [! -f "/root/.cshrc.jail"]; then
	echo "Custom .cshrc.jail in /root doesn't exist." >&2
	exit 1
fi

mv ${jail_dir}/.cshrc ${jail_dir}/.cshrc.orig

cp /root/.cshrc.jail ${jail_dir}/.cshrc

Write to log briefly what happened
echo "Added custom .cshrc to ${jail_name}."

exit 0

Don't forget to chmod +x it. Then you just run it with /usr/local/scripts/custom_cshrc.sh <jail_name> .

Misc
Another initial jail setup task may be to set up the timezone. You can (unlikely, but possible) have
weird internet problems if your time is off. The host time being right is the most important, but feel
free to check the current date and time with the date command. If you need to update things, run
tzsetup and choose your timezone.

Also, you may update the jail. If you just created or updated your base jail, or if this is a thin jail,
then there is actually no reason for this. But if you do need/want to do an update...

So we must first edit .../jails/$jail/jail.conf to change securelevel from 2 to 0 , then restart the jail.

Then the updating can happen.

Then we edit .../jails/$jail/jail.conf again to change securelevel from 0 to 2 , then restart the jail
again.

And now you have a current, clean slate upon which to build.

Resources
The Bastille docs are great. https://bastillebsd.org/

Updates cannot be installed when the system securelevel (jail.conf setting) is greater than
zero.

bastille cmd $jail freebsd-update fetch install
bastille pkg $jail update
bastille pkg $jail upgrade -y

Fun Stuff

Fun Stuff

BookStack Jail
Prerequisites
Have a jail called bs_jail
We already created a handful at once. Let's look (at the relevant output).

Initial Prep
You might as well make sure you have your custom .cshrc in the jail (see custom_cshrc.sh saved in
/usr/local/scripts), and maybe run tzsetup as well.

Install some initial necessary packages.

Advanced Prep (nullfs)
(Relocate database outside the jail)
If we ever have a problem with this jail and need to blow it away, it would be nice for the database
to live on. We can do this! In fact, this is probably one of several steps that could/should be taken
to ensure data not specific to the jail is saved outside the jail.

[root@freebsd:~]# bastille list
 JID IP Address Hostname Path
 bs_jail 10.101.10.110 bs_jail /usr/local/bastille/jails/bs_jail/root

(Most everything below is performed outside the jail.)

bastille pkg bs_jail install -y vim-console git sudo bash

First, let's create a directory for it the db to live. You can mkdir -p this step. I have ZFS and
/zroot/data already, so it'll be:

MariaDB (MySQL) stores the database in /var/db/mysql . In fact, it probably would store multiple
databases in there if we were using it for something else in the jail. Luckily, we're not. So there's
our directory where we'll mount the new directory.

In order to get a /var/db/mysql in the first place, mysql needs to be installed, so we'll do that now.

The user and group that own the BookStack db are both 88 (which is the mysql user and group,
which you can see in the stdout from the previous command). We've gotta match that, and the
permissions.

Next double check that the folder /var/db/mysql exists. It should. If it does, proceed with:

Now it's time to set up the fstab . In the case of bastille, it's in /usr/local/bastille/jails/$NAME . For a
thin jail, there will already be a line in the fstab , so this can be pasted in prior to it, or after, or just
the relevant row.

zfs create -o compress=lz4 -o atime=off zroot/data/dbs/

zfs create -o compress=lz4 -o atime=off zroot/data/dbs/bookstack

bastille pkg bs_jail install -y mariadb102-client mariadb102-server

As mentioned on a prior page, newer packages for mariadb seem to behave differently, so
parts of this tutorial related to mariadb may need to be adjusted.

I'm leaving myself (and whoever else) a possible hint. A newer mysql has a different
syntax. The following link talks about it midway down the page:
https://arstechnica.com/gadgets/2020/05/caddy-offers-tls-https-and-more-in-one-
dependency-free-go-web-server/ ... I suspect there's more to it though...

cd /usr/local/data/dbs/

chown 88:88 bookstack/

bastille stop bs_jail

Device Mountpoint FStype Options Dump Pass#
/usr/local/data/dbs/bookstack /usr/local/bastille/jails/bs_jail/root/var/db/mysql nullfs rw,late 0 0

https://arstechnica.com/gadgets/2020/05/caddy-offers-tls-https-and-more-in-one-dependency-free-go-web-server/
https://arstechnica.com/gadgets/2020/05/caddy-offers-tls-https-and-more-in-one-dependency-free-go-web-server/

While the jail is stopped, we need to ensure mysql (mariadb) has the powers is needs.

Now you can restart the jail and finish the setup.

Install PHP
Install PHP, as well as the necessary PHP extensions.

I guess we can check the version.

Soft-link php.ini-production to php.ini .

Enable and start PHP-FPM.

Install MariaDB
Install MariaDB. (Skip this one step if you already ran this command in anticipation of nullfs-
mounting the db folder.)

echo 'allow.raw_sockets = "1";' >> /usr/local/bastille/jails/bs_jail/jail.conf

bastille start bs_jail

bastille pkg bs_jail install -y php72 php72-mbstring php72-tokenizer php72-pdo php72-pdo_mysql \
php72-openssl php72-hash php72-json php72-phar php72-filter php72-zlib php72-dom \
php72-xml php72-xmlwriter php72-xmlreader php72-pecl-imagick php72-curl php72-session \
php72-ctype php72-iconv php72-gd php72-simplexml php72-zip php72-filter php72-tokenizer \
php72-calendar php72-fileinfo php72-intl php72-mysqli php72-phar php72-opcache php72-tidy

bastille cmd bs_jail php --version

bastille cmd bs_jail ln -s /usr/local/etc/php.ini-production /usr/local/etc/php.ini

bastille sysrc bs_jail php_fpm_enable=yes

bastille service bs_jail php-fpm start

bastille pkg bs_jail install -y mariadb102-client mariadb102-server

Might as well check the version.

Enable and start MariaDB.

Check if it's running, because we might have permissions issues or something:

Assuming we're up and running, let's move on.

Get MariaDB ready
Run the secure installation executable to lock things down. Note your root password you create.

Log into MariaDB as the root user.

Create a database (or use an existing name, if you'll be importing, which I will).

Install Nginx
Install Nginx.

bastille cmd bs_jail mysql --version

bastille sysrc bs_jail mysql_enable="yes"

bastille service bs_jail mysql-server start

bastille service bs_jail mysql-server status

If there's an issue, one possibility could be the inability to write to /tmp . A bastille cmd bs_jail
chmod 1777 /tmp would solve that. But after mariadb102 , there seems to be some other issue
that I haven't figured out yet.

bastille cmd bs_jail mysql_secure_installation

bastille cmd bs_jail mysql -u root -p

CREATE DATABASE dbname; # substitute with your choice of name, though it does not matter if creating new
GRANT ALL ON dbname.* TO 'username' IDENTIFIED BY 'password'; # substitute any user and pass
FLUSH PRIVILEGES;
exit;

Check the version.

Enable and start Nginx.

Set up Nginx for BookStack.

And we'll add:

Now we need to include bookstack.conf in the main nginx.conf file.

bastille pkg bs_jail install -y nginx

bastille cmd bs_jail nginx -v

bastille sysrc bs_jail nginx_enable=yes

bastille service bs_jail nginx start

bastille cmd bs_jail vim /usr/local/etc/nginx/bookstack.conf

server {
 listen 80;
listen [::]:80; # you may need to comment this out
 server_name bookstack.mydomain.tld; # substitute hostname.domain
 root /usr/local/www/bookstack/public;

 index index.php index.html;

 location / {
 try_files $uri $uri/ /index.php$is_args$args;
 }

 location ~ \.php$ {
 try_files $uri =404;
 include fastcgi_params;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_pass 127.0.0.1:9000;
 }
}

And add the following line to the http {} block.

Test the Nginx configuration changes.

Good? Then reload Nginx.

Install Composer
Install Composer by running the script on their website. Note the final step is not on their website.

Go to their website for line 2 below: https://getcomposer.org/download. The remaining steps are
the same (plus line 5).

bastille console bs_jail

And we're back in the land of the host. Now we'll check this version.

bastille cmd bs_jail vim /usr/local/etc/nginx/nginx.conf

include bookstack.conf;

bastille cmd bs_jail nginx -t

bastille service bs_jail nginx reload

This is going into the bs_jail console again briefly!

php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"
php -r "if (hash_file('SHA384', 'composer-setup.php') === 'long_hash') { echo 'Installer verified'; } else { echo
'Installer corrupt'; unlink('composer-setup.php'); } echo PHP_EOL;"
php composer-setup.php
php -r "unlink('composer-setup.php');"
mv composer.phar /usr/local/bin/composer
exit

bastille cmd bs_jail composer --version

https://getcomposer.org/download

Install BookStack
Since composer is not intended to be run as root user, we're going to set up a user. We'll run most
of these within the jail.

In the jail, we'll run adduser , with "username" name (whichever name you chose when you gave it
privileges to write to the mysql db), add it to the wheel group, choose bash shell, add password,
and done. Here's a head start:

Great, but let's make this easier on ourselves. Run the visudo command and uncomment the
%wheel ALL=(ALL) ALL line to allow members of the wheel group to execute any command.

Then su - bs_user , and let's get started already.

Let's create the document root folder and take ownership of it.

Run the composer install command from the /usr/local/www/bookstack directory.

Copy the .env.example file to .env and populate it with your own database (and mail details?).

bastille console bs_jail

adduser -s bash -G wheel

visudo

Uncomment by removing hash (#) sign
 %wheel ALL=(ALL) ALL

sudo mkdir -p /usr/local/www/bookstack

sudo chown -R username:username /usr/local/www/bookstack

Substitute with the user you just created (and whose shell you're in now).

composer install

cp .env.example .env

vim .env

You can generally get away with just changing the db name, db user, and db password (per
MariaDB steps above). You may need to put the user and password in double quotes. Come back
to this step if php artisan migrate says access denied . If importing a database, be sure to use that db
name. For a public web server, be sure to update APP_URL as well.

Optional: Ensure that the storage , bootstrap/cache and public/uploads folders are writable by the web
server. (Prob can ignore given we've got a chown incoming.)

In the application root (where you should already be), run the following command.

Finish up!
To update the database:

If there was an error here, fix the problem, then run the following, and then jump back up three
steps (to the . env file).

Change ownership of the /usr/local/www/bookstack directory to www .

You can now login using the default admin details admin@admin.com with a password of password
(or, if you've restored a db, then you can log in with those credentials). It is recommended to
change these details directly after your first login. Create your user account as an admin user, log
in with it, and then disable the default admin user.

Are We Really Done?
As things stand, the BookStack webserver is listening on the jail's internal IP on port 80 (http). I
would not recommend setting up pf to redirect http traffic to the jail. The jail will be waiting and
ready when we can access it securely. We'll do that next in our second... err... third jail. We'll
create a simple website in the second jail. Plus it'll buy time for the following...

php artisan key:generate

php artisan migrate

php artisan config:clear
php artisan cache:clear

sudo chown -R www:www /usr/local/www/bookstack

Also! In our initial legwork of getting the server set up, we touched on DNS records. Well, now is a
good time (actually, these records don't seem to instantaneously populate, so before now would
have been better) to create a CNAME record. Over in NameCheap, the 'hostname' is "bookstack",
or "bs", or whatever you want... "docs"? ... and "mydomain.tld" is the 'value', and save, and you're
done.

Bonus
At the time of writing this, BookStack has not implemented a change requested by users (and even
submitted). But it works! One notable item missing from BookStack is the ability to go to the next
or previous pages. Well, if you add the following script to the custom header settings, it'll insert
this into the <head> of the html, and bam, buttons.

The one thing you'll want to do is set your own rgb numbers in the two .bnav-page-button:hover CSS
items, so you'll get whatever color you want, rather than the red that is currently used.

Check out the relevant PR for more info. https://github.com/BookStackApp/BookStack/issues/1381

<script>
function Button(type, hint, title, attributes){

const prevSVG = '<svg preserveAspectRatio="xMidYMid meet" height="1em" width="1em" fill="none"
xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" stroke-width="2" stroke-linecap="round" stroke-
linejoin="round" stroke="currentColor"><g><line x1="19" y1="12" x2="5" y2="12"></line><polyline
points="12 19 5 12 12 5"></polyline></g></svg>';
const nextSVG = '<svg preserveAspectRatio="xMidYMid meet" height="1em" width="1em" fill="none"
xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" stroke-width="2" stroke-linecap="round" stroke-
linejoin="round" stroke="currentColor"><g><line x1="5" y1="12" x2="19" y2="12"></line><polyline
points="12 5 19 12 12 19"></polyline></g></svg>';
var currentSVG = '';

if(type == "next"){
currentSVG = nextSVG
} else {
currentSVG = prevSVG
}

this.element = document.createElement("a");
this.element.classList.add("bnav-page-button");

this.element.classList.add(type);
var inner = '<div class="bnav-card-svg ' + type + '">' + currentSVG + '</div><div class="bnav-page-card ' +
type + '"><div class="bnav-card-hint">' + hint + '</div><div class="bnav-card-
title">' + title + '</div></div>'
attributes.innerHTML = inner

for (var i in attributes) {
this.element[i] = attributes[i];
}
return this.element;
}

document.addEventListener("DOMContentLoaded", function() {
if (window.location.pathname.indexOf("page")) {

var pages = document.querySelectorAll("a.page"),
current = document.querySelector("a.selected"),
currentIndex = Array.prototype.indexOf.call(pages, current);

var pageNavLinks = document.createElement("div");
pageNavLinks.classList.add("bnav-page-nav-links")
document.querySelector(".page-content").appendChild(pageNavLinks);

if (pages.item(currentIndex - 1) != null) {
var prevPageEl = pages.item(currentIndex - 1);
var prevButton = new Button('prev', 'Previous Article', prevPageEl.innerText, { href: prevPageEl.href })
document.querySelector(".bnav-page-nav-links").appendChild(prevButton);
}

if (pages.item(currentIndex + 1) != null) {
var nextPageEl = pages.item(currentIndex + 1);
var nextButton = new Button('next', 'Next Article', nextPageEl.innerText, { href: nextPageEl.href })
document.querySelector(".bnav-page-nav-links").appendChild(nextButton);
}
}
});
</script>

<style>

/* bottom page navigation */

.bnav-page-nav-links {
width: auto;
margin: 3em 0 0 0;
display: grid;
padding: 1.5em 0 0 0;
column-gap: 24px;
grid-template: "previous next" auto / 1fr 1fr;
border-top: solid #EAEAEA 1px;
}

.bnav-page-button {
color: rgb(36, 42, 49) !important;
display: flex;
margin: 0;
padding: 0;
position: relative;
flex-direction: row;
align-items: center;
text-decoration: none !important;
border: 1px solid rgb(230,236,241);
border-radius: 3px;
box-shadow: rgba(116,129,141,0.1) 0px 3px 8px 0px;
transition: border 250ms ease 0s;
}

.bnav-page-button:hover{
color: rgb(18, 124, 173) !important;
border-color: rgb(18, 80, 173);
cursor: pointer;
}

.bnav-page-button:hover svg{
color: rgb(18, 80, 173);
}

.bnav-page-button.prev {
grid-area: previous / previous / previous / previous;

}

.bnav-page-button.next {
grid-area: next / next / next / next;
}

.bnav-page-card {
flex: 1 1 0%;
margin: 0px;
display: block;
padding: 1em;
text-align: left;
}

.bnav-page-card.next {
text-align: left;
}

.bnav-page-card.prev {
text-align: right;
}

.bnav-card-svg {
padding-right: 0;
flex: 0 0 auto;
color: rgb(157, 170, 182);
margin: 0px;
display: block;
padding: 16px;
font-size: 24px;
}

.bnav-card-svg.prev {
order: 0
}

.bnav-card-svg.next {
order: 1
}

.bnav-card-svg > svg {
width: 1em;
height: 1em;
vertical-align: middle;
transition: color 250ms ease 0s;
}

.bnav-card-hint {
color: rgb(157, 170, 182);
margin: 0;
display: block;
padding: 0;
}

.bnav-card-hint > span {
font-size: 12px;
font-weight: 400;
line-height: 1.2;
}

.bnav-card-title {
margin: 0px;
display: block;
padding: 0px;
transition: color 250ms ease 0s;
}

.bnav-card-title > span {
font-size: 16px;
font-weight: 500;
line-height: 1.5;
}

.bnav-card-icon {
flex: 0 0 auto;
color: rgb(157, 170, 182);
margin: 0px;
display: block;

Bonus #2: Updating
According to BookStack site, this can be done very quickly in a single line. We'll try it.

It works! It warns you that you're doing this migration in production, and you say 'yes' and it's
done.

References
https://www.vultr.com/docs/how-to-install-bookstack-on-freebsd-12

Updating: https://www.bookstackapp.com/docs/admin/updates/

I skipped a few things, but it should work as I describe.

padding: 16px;
font-size: 24px;
transition: color 250ms ease 0s;
}

/* end bottom page navigation */
</style>

git pull origin release && composer install --no-dev && php artisan migrate

https://www.vultr.com/docs/how-to-install-bookstack-on-freebsd-12

Fun Stuff

Website Jail
Before this, I can't think of a time where I edited or wrote html. I can remember creating a basic
index.php as a test for nginx and/or apache a couple times while tinkering with Nextcloud, but that
might be it.

Accordingly, this will be a very basic start of a very simple website. I maybe look forward to doing
"cool" complicated stuff in the future, but for now we'll have close to nothing on it. I'm creating the
web page because I figure that I might as well have a landing page for the domain itself, but I'm
more interested in setting up the reverse proxy work for the subdomains.

To set the expectations properly, the goal is to create an html file that renders in a browser by
visiting mydomain.tld . We'll not be worrying about TLS/https (because caddy will eventually do that
for us). We'll simply install a web server, create the html file, port forward (rdr) in PF to the jail,
and visit in the browser. Someone who's done this a couple times - even if they're documenting it -
might be be done in under two minutes. It took me more than two minutes.

Prep
Run the custom_cshrc.sh you created in /usr/local/scripts to put a custom .cshrc file in the jail.
Remember, the script just takes the jail name as its only argument.

If desired, adjust the date and time with tzsetup or bastille cmd website_jail tzsetup .

Web Server
We'll keep it simple and consistent (i.e., BookStack is served by nginx), so we'll install nginx .

And then we'll enable it and start it.

bastille pkg website_jail install -y nginx vim-console

bastille sysrc website_jail nginx_enable="YES"

bastille service website_jail nginx start

We'll configure it in a moment.

Internet Content
That sure is a fancy title for a bare html file.

Let's just hop into the jail console for a few minutes.

And we'll head to the usual FreeBSD spot, create a website directory, and then file.

And we will create our initial homepage.

Configuration
Now we can create our configuration in nginx so it knows how to listen and what content to serve.

bastille console website_jail

cd /usr/local/www

mkdir mydomain.tld && cd mydomain.tld

vim index.html

<!DOCTYPE html>
<html>
<body>

<h1>We Did It!</h1>

<p>How exciting.</p>

<p>Be sure to check out all the great related services. Links coming soon...</p>

</body>
</html>

vim /usr/local/etc/nginx/nginx.conf

In theory, all we have to do is change server_name localhost to server_name mydomain.tld
www.mydomain.tld and change root /usr/local/www/nginx to root /usr/local/www/mydomain.tld . With any
luck, we can reload nginx and be ready to test (almost).

Before moving forward, exit out of the jail console.

First we test the config (even though the test is built into the reload).

If successful, we perform the reload.

Testing It Out
You'll need the jail's IP for this, which you can get from bastille list .

Then there needs to be a redirect rule in PF , which is basically port forwarding. There's an
example already in /etc/pf.conf , so it just needs to be uncommented, and updated with the website
jail's internal IP.

And it needs to be tested with:

Hiccup
NameCheap.com provides a default CNAME record that redirects my internet traffic to their
"parking page" and I hadn't deleted that yet, so I had to wait on it to die.

Visiting the IP address does successfully display the webpage, but it would have been nice to see
DNS do what it's supposed to too. Of course, it worked via hostname eventually.

Last Step

bastille cmd website_jail nginx -t

bastille service website_jail nginx reload

the macro
website_ip = "10.101.10.140"

the port forward
rdr pass inet proto tcp from any to any port {80, 443} -> $website_ip

pfctl -vnf /etc/pf.conf

Remove those rules from pf and force reload pf . We will be using https in no time flat after the
next jail is up.

Fun Stuff

Caddy Jail
We will ultimately change PF to direct all web traffic to this jail. This jail will run caddy as a
reverse proxy for the other jails. Web request SSL terminations happen at the caddy web server,
and the traffic is then passed transparently to the respective jails. A great benefit of caddy is the
built-in Let's Encrypt feature for initial certs and renewals.

Preamble
The beginning steps are mostly the same across the jails. Before jumping in, if you haven't
already, remember to run custom_cshrc.sh caddy_jail , and then probably/possibly run bastille caddy_jail
tzsetup and choose your time zone. Actually, it would make the most sense for the reverse proxy
to be on the host's time, which it should be already, so ignore that.

Next, we may update the jail. If you just created or updated your base jail, or if this is a thin jail,
then there is actually no reason for this. But if you do need/want to do an update, refer to a prior
page that talks about initial jail setup.

Setup Specific to this Jail
We install what we need from pkg .

You should read the message spit out by pkg because it tells you all you need to know, pretty
much. In particular, pay attention to the version of caddy . This write-up centers around v1 . This
write-up will not work well with v2 .

Config for the Jail
We'll need to give caddy the ability to "authenticate" us with Let's Encrypt.

bastille pkg caddy_jail install -y caddy vim-console curl

bastille sysrc caddy_jail caddy_cert_email="your.email@example.org"

And then we'll need the Caddyfile , which hopefully works how we think it will.

But wait! Save yourself some time and run this:

Your config/Caddyfile will be different depending on v1 or v2. The quarterly FreeBSD package is v1
right now (as of the time of this original write-up).

For v1 :

For v2 :

bastille cmd caddy_jail caddy -version

bastille console caddy_jail

cd /usr/local/

mkdir www && cd www

vim Caddyfile

Depending on V1 or V2, mind the Caddyfile location. V2 moves the Caddyfile location from
/usr/local/www to /usr/local/etc/caddy/Caddyfile , so be sure its location matches the location
listed in the rc file (and is preferably in the standard location according to V1 or V2).

mydomain.tld, www.mydomain.tld {
 proxy / 10.101.10.140:80 {
 transparent
 }
}

bookstack.mydomain.tld {
 proxy / 10.101.10.110:80 {
 transparent
 }
}

mydomain.tld, www.mydomain.tld {
 reverse_proxy 10.101.10.140
}

Then exit out of the jail's console. And then we enable caddy and start it (almost).

Grand Finale
Now we adjust /etc/pf.conf to forward http and https traffic to the caddy jail.

And then we test that the config doesn't have an errors, and then reload PF . (Reload w/ just -f .)

And now let's start caddy and hope that it grabs certs and starts serving our two existing jails.

And either check the URL in your browser, or also check:

That was easy.

bookstack.mydomain.tld {
 reverse_proxy 10.101.10.110
}

bastille sysrc caddy_jail caddy_enable="YES"

the macro
caddy_ip = "10.101.10.100"

and the port forward
rdr pass inet proto tcp from any to any port {80, 443} -> $caddy_ip

pfctl -vnf /etc/pf.conf

bastille service caddy_jail caddy start

bastille service caddy_jail caddy status

More Fun Stuff

More Fun Stuff

Bitwarden-rs Jail
My company provides a password manager, so I don't need this. But what they provide is closed
source. I may just switch over to bitwarden, but perhaps little by little. For now, I just want to get
this working.

Like the password manager I'm provided for work, this is a zero-knowledge setup; i.e., the database
is stored in an encrypted state, locked by my complex pass phrase. If someone someone gains
control of the jail, or even the host system, the database of records/credentials does them no
good. It's still scary to put up a publicly-accessible instance, but I'm doing it anyway. Besides, I'll
only use it in limited capacity for now, and perhaps I'll put it behind a VPN (Wiregaurd?) at some
point.

Advanced Prep (nullfs)
(Relocate database outside the jail)
If we ever have a problem with this jail and need to blow it away, it would be nice for the database
to live on. We can do this! In fact, this is probably one of several steps that could/should be taken
to ensure data not specific to the jail is saved outside the jail. We already did this for the
BookStack jail (and the majority of this section is a straight copy). Carrying on:

Bitwarden-rs stores the database in a /data directory. The standard install creates the /data
directory in /home/bitwardenrs/bitwarden_rs_dist . Due to the fact that this is a thin jail, the /home
directory (a few directories deep) where the null mount would go cannot be used; so instead we'll
mount the /data directory over top of the new data dir we'll create.

zfs create -o compress=lz4 -o atime=off zroot/data/dbs/bitwarden

We will need to adjust the .env file accordingly.

bastille console bw_jail

cd /var && mkdir -p db/data

Then exit from the su and exit from the console.

Adjust the jail's fstab .

On With It
First of all, let's not run tzsetup on this jail. That gave me problems with 2FA on another instance.
Let's try without it.

Grab initial packages/dependencies.

Adjust

bastille stop bw_jail

Device Mountpoint FStype Options Dump Pass#

/usr/local/bastille/releases/12.1-RELEASE /usr/local/bastille/jails/bw_jail/root/.bastille nullfs ro 0 0

/usr/local/data/dbs/bitwarden /usr/local/bastille/jails/bw_jail/root/var/db/data nullfs rw,late 0 0

bastille start bw_jail

Below, you'll need to set ownership or permissions on this /var/db/data , otherwise bitwarden-
rs can't write to it.

bastille pkg bw_jail install -y sqlite3 nginx git sudo vim-console bash node npm python27-2.7.18

We've got to do a bit of work inside the jail (it'll be easier there)

bastille console bw_jail

some npm dependency will need to have python2.7 and will fail with python3

cd /usr/local/bin/

set the symlink

Set up user.
Add new bitwardenrs user to the jail. Set the user below to: bitwardenrs. Enter every line, no need
for other configs, only your password

Adjust priv's and log in:

One add'l step needed: (maybe... try skipping it)

ln -s /usr/local/bin/python2.7 python

cd -

adduser -s bash

allow sudo, we will use it later

visudo

ADD

bitwardenrs ALL=(ALL) ALL

change to the new user to build and execute our service

su bitwardenrs

cd

id

should look like: uid=1001(bitwardenrs) gid=1001(bitwardenrs) groups=1001(bitwardenrs)

bitwardenrs@bw_jail:~ $ exit

root@bw_jail:~ # chmod 1777 /tmp

Another add'l step, and you can't skip this:
Within jail, as root , cd /var/db && chown -R bitwardenrs:bitwardenrs data)

Install rust

Time to build.

root@bw_jail:~ # su bitwardenrs

install latest rust version, pkg version may be outdated and can't build bitwarden_rs

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

include the rust env variables

source $HOME/.cargo/env

get back to the users home
cd ..

checkout the latest bitwarden_rs release

git clone https://github.com/dani-garcia/bitwarden_rs/

cd bitwarden_rs/

git checkout "$(git tag --sort=v:refname | tail -n1)"

and build it with sqlite support

cargo build --features sqlite --release

cargo install diesel_cli --no-default-features --features sqlite-bundled

"If you need web-vault, we will build it here." Of course we need the web vault.

"Install dependencies and fix some issues."

cd ..

WEB-VAULT

clone the repository

git clone https://github.com/bitwarden/web.git web-vault

cd web-vault

switch to the latest tag, is not working here, dani-garcia/bw_web_builds lacks v2.12.0 patch
export WEB_VERSION="$(git tag --sort=v:refname | tail -n1)"
lets use the last working version

^^ use that `export` command instead of the below
export WEB_VERSION=v2.14.0

git checkout ${WEB_VERSION}

download and apply the bitwarden_rs patch

curl https://raw.githubusercontent.com/dani-garcia/bw_web_builds/master/patches/${WEB_VERSION}.patch
>${WEB_VERSION}.patch

git apply ${WEB_VERSION}.patch -v

there is no native freebsd version from node-sass 4.11, lets bump it to 4.12.0

cat package.json |sed -e 's/"node-sass": "^4.11.0",/"node-sass": "4.13.0",/' | tee package.json
I deleted a ^ and changed to 13, from the original write-up I found

download submodules

npm run sub:init

Finally, Build the web-vault

"At this point we have every components and will have to put them together"

manually install angular/compiler-cli

npm i @angular/compiler-cli

install all the other dependencies

npm install

sweetalert used to fail with the latest angular2, but it's been fixed

npm run dist

A 1G RAM VPS instance will run out of memory. Interestingly, it acted incapable of using the
swapfile, though I wonder if I could have forced it to.

I had to resize the droplet to get 2G of RAM, and then export NODE_OPTIONS=--
max_old_space_size=4096 (from within the bash shell). And then it works, right? Right.

cd

copy bitwarden_rs dist

cp -r ~/bitwarden_rs/target/release bitwarden_rs_dist

cd bitwarden_rs_dist

Config
There are .env file settings to change. From bitwardenrs user's home dir:

Edit accordingly (remember, we chose a different data dir to null-fs mount).

Set up nginx.

and copy the web-vault files

cp -r ../web-vault/build web-vault

cp bitwarden_rs/.env.template bitwarden_rs_dist/.env

Main data folder
 DATA_FOLDER=/var/db/data

{...}

Domain settings
DOMAIN=https://vault.mydomain.tld

su 		# be root

bash

create nginx.conf

cat << EOF >/usr/local/etc/nginx/nginx.conf
worker_processes auto;

events {
 worker_connections 1024;
}

http {
 include mime.types;
 default_type application/octet-stream;
 sendfile on;
 keepalive_timeout 6h;

#server {
 #listen 		80;
 #server_name vault.mydomain.tld;
 #return 301 https://$server_name$request_uri;
#}

server {

 listen 10.101.10.120:80;
 server_name vault.mydomain.tld;

 #ssl_session_cache builtin:1000 shared:SSL:10m;
 #ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 #ssl_ciphers HIGH:!aNULL:!eNULL:!EXPORT:!CAMELLIA:!DES:!MD5:!PSK:!RC4;
 #ssl_prefer_server_ciphers on;

 access_log /var/log/nginx/bitwarden_rs_web_vault.log;

 location / {
 proxy_set_header Host \$host;
 proxy_set_header X-Real-IP \$remote_addr;
 proxy_set_header X-Forwarded-For \$proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto \$scheme;

 proxy_pass http://10.101.10.120:8000;
 proxy_read_timeout 90;

 #proxy_redirect http://10.101.10.120:8000 https://10.101.10.120;
 }
 }
}
EOF

enable and start nginx

That's right. Just port 80. It's behind Caddy, remember?

"Create the bitwardenrs init script"

sysrc nginx_enable="YES"

nginx -t		# test

service nginx start

mkdir -p /usr/local/etc/rc.conf.d/

limit the rocket server only to localhost

echo "ROCKET_ADDRESS=10.101.10.120" >/usr/local/etc/rc.conf.d/bitwardenrs # changed to actual

cat <<EOF > /usr/local/etc/rc.d/bitwardenrs
#!/bin/sh

PROVIDE: bitwardenrs
REQUIRE: LOGIN DAEMON NETWORKING
KEYWORD: jail rust

Enable this script by adding:
bitwardenrs_enable="YES"
... to /etc/rc.conf

. /etc/rc.subr

name="bitwardenrs"
rcvar="bitwardenrs_enable"
bitwardenrs_chdir=/home/bitwardenrs/bitwarden_rs_dist
This is the tool init launches
command="/usr/sbin/daemon"

Adjust pf.conf to allow connections.
Just kidding! We're not touching PF. We've got caddy. Modify the Caddyfile in the caddy_jail. Add
the following:

pidfile="/var/run/\${name}.pid"

This is the tool daemon launches
task="./bitwarden_rs"
procname="/bin/bash"

command_args="-u bitwardenrs -p \${pidfile} \${task}"

load_rc_config $name
run_rc_command "\$1"
EOF

sudo sysrc bitwardenrs_enable="YES"

sudo chmod +x /usr/local/etc/rc.d/bitwardenrs

sudo service bitwardenrs start

Before going lower, be sure to create a CNAME record to catch vault.mydomain.tld . Done?
Let's proceed.

vault.mydomain.tld {

 gzip

 # The negotiation endpoint is also proxied to Rocket
 proxy /notifications/hub/negotiate 10.101.10.120:80 {
 transparent
 }

 # Notifications redirected to the websockets server
 proxy /notifications/hub 10.101.10.120:3012 {

Or is it encode gzip ? No, that's v2. Your welcome, future self.

Then reload caddy.

After Setup! Clean Up!
First, log onto your beautiful self-hosted, powered-by-rust password manager site, and set up an
account with an uncrackable password. Then...

And then restart the service or restart the jail. (If you just restart the service, you may be stuck in
the terminal, so I just restart the jail.) When you visit and try to sign up again with a new account,
it'll pretend to allow you, and then give you a failure warning.

Also, 2FA
Bitwarden-rs allows you to various methods of 2FA. The simplest and most common is an
Authenticator app. Do it right away.

References

 websocket
 }

 # Proxy the root directory to Rocket
 proxy / 10.101.10.120:80 {
 transparent
 }
}

bastille service caddy-jail caddy restart

This server is open to others to sign up and use. Go into the .env file and shut off new user
signups!

Controls if new users can register
 SIGNUPS_ALLOWED=false

Adapted from: https://www.ixsystems.com/community/threads/how-to-build-your-own-
bitwarden_rs-jail.81389/

More here:
https://www.reddit.com/r/Bitwarden/comments/dg78bi/building_selfhosted_bitwarden_via_bitwarde
n_rs/

Also: https://dennisnotes.com/note/20181112-bitwarden-server/ (Ubuntu, Docker, nginx, script
install, backup procedure)

https://www.ixsystems.com/community/threads/how-to-build-your-own-bitwarden_rs-jail.81389/
https://www.ixsystems.com/community/threads/how-to-build-your-own-bitwarden_rs-jail.81389/
https://www.reddit.com/r/Bitwarden/comments/dg78bi/building_selfhosted_bitwarden_via_bitwarden_rs/
https://www.reddit.com/r/Bitwarden/comments/dg78bi/building_selfhosted_bitwarden_via_bitwarden_rs/
https://dennisnotes.com/note/20181112-bitwarden-server/

More Fun Stuff

Gitea Jail
This will be our very own, lightweight personal Github/Gitlab. And we'll do something pretty cool
with it later.

This should be easy by now, right? Now that it works, it sure looks short and easy...

Set up location of repos/db

Create the jail

Setup - pre-login
Run /usr/local/scripts/custom_cshrc git_jail to copy the .cshrc .

Setup - post-login
Log into console.

Download packages possibly needed. (Possibly with sqlite3 as well)

zfs create -o compress=lz4 -o atime=off zroot/data/git

zfs create -o compress=lz4 -o atime=off zroot/data/dbs/gitea

bastille create git_jail 12.1-RELEASE 10.101.10.150

bastille start git_jail

bastille console git_jail

pkg install -y git gitea vim-console

Create the folder where the nullfs mount will occur (for one of the two; the other was created by
installing gitea).

The chown command is probably premature. After the jail is restarted with the updated fstab , you
probably need to do it again (from within the jail), and it may need to be done for the other
directory (nullfs-mounted) in the fstab as well.

Exit the console.

Finishing setup touches
Stop the jail.

Edit the fstab of this thin jail to mount the git dataset.

For the db, we'll need to allow raw sockets. (Actually, probably not needed if using sqlite3 . Needed
for Mariadb though.)

And we'll start up the jail again.

May want to pop into the console now to change ownership (chown) of the "Device" entries from
the fstab .

Jail is ready for package setup
Sqlite3

mkdir -p /usr/local/data/git

chown git:git /usr/local/data/git

bastille stop git_jail

Device Mountpoint FStype Options Dump Pass#
/usr/local/data/git /usr/local/bastille/jails/git_jail/root/usr/local/data/git nullfs rw,late 0 0
/usr/local/data/dbs/gitea /usr/local/bastille/jails/git_jail/root/var/db/gitea nullfs rw,late 0 0

echo 'allow.raw_sockets = "1";' >> /usr/local/bastille/jails/git_jail/jail.conf

bastille start git_jail

I tried to pkg install it, but it said it was already there. No further setup should be necessary. I was
having issues at first, and I couldn't figure out the problem, so I ended up creating the db ahead of
time in case that was it. I don't think it was, and so creating the db ahead of time should not be
needed.

Gitea
Enable it.

Make a backup of the config file. First, log into the console.

Configure as necessary the /usr/local/etc/gitea/app.ini . (View the changes, but you can't make them
all yet. See below.)

bastille sysrc git_jail gitea_enable=YES

bastille console git_jail

cp /usr/local/etc/gitea/conf/app.ini /usr/local/etc/gitea/conf/app.ini.bak

#APP_NAME can be fun to change

[database]
< USER = root
> USER = git

[oauth2]
< JWT_SECRET = D56bmu6xCtEKs9vKKgMKnsa4X9FDwo64HVyaS4fQ...
> JWT_SECRET = HO8YPNfNkhB_-ESE5e637TQcbja0WylppIsiFdgm...

[picture]
DISABLE_GRAVATAR = true

[repository]
I copied (cp -a) the .gitconfig and .ssh file and dir from /usr/local/git (the default git home dir)
< ROOT = /var/db/gitea/gitea-repositories
> ROOT = /usr/local/data/git

I have this for later. I think I'll enable it, since I'm the only user.
> # Default is false. If true, user can create a repo by pushing local to remote (gitea)
> #ENABLE_PUSH_CREATE_USER = true

What is shown above is that the secrets have already been updated. Here's how to do it.

See below for how to use gitea's built-in secret tool to replace the existing ones.
[security]
< INTERNAL_TOKEN = 1FFhAklka01JhgJTRUrFujWYiv4ijqcTIfXJ9o4n1fWxz+XVQdXhrqDTlsnD7fvz7g
< SECRET_KEY = ChangeMeBeforeRunning
> INTERNAL_TOKEN = eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuYmYiOjE1OTU2NDA4NjB9.oZEw2...
> SECRET_KEY = qVvCzqg4mqe2tQHmZfE99EvzADFvOMY9fO3BdTFw4vwcBVvfAdyxJyBL9Hg...

[server]
< DOMAIN = localhost
< HTTP_ADDR = 127.0.0.1
< ROOT_URL = http://localhost:3000/
> DOMAIN = gitea.mydomain.tld
> HTTP_ADDR = 10.101.10.150
> ROOT_URL = https://gitea.mydomain.tld:443/ # this is the "https clone address/port"
Note that internally, it's still listening on port 3000. ^^ that's for the clone button
< SSH_PORT = 22
> SSH_PORT = 40202 # this is the clone port for ssh

> START_SSH_SERVER = true # to make gitea manage ssh connections, instead of the host
> SSH_LISTEN_HOST = 10.101.10.150
> SSH_LISTEN_PORT = 22002 # non-root user can't listen on 22
> LANDING_PAGE = explore # this shows the repos, instead of a gitea advert

to prevent web registrations
[service]
< DISABLE_REGISTRATION = false
> DISABLE_REGISTRATION = true

sed -i .tmp 's/^JWT_SECRET.*=.*$/JWT_SECRET = '`gitea generate secret JWT_SECRET`'/g' \
/usr/local/etc/gitea/conf/app.ini

sed -i .tmp 's/^INTERNAL_TOKEN.*=.*$/INTERNAL_TOKEN = '`gitea generate secret INTERNAL_TOKEN`'/g' \
/usr/local/etc/gitea/conf/app.ini

sed -i .tmp 's/^SECRET_KEY.*=.*$/SECRET_KEY = '`gitea generate secret SECRET_KEY`'/g' \
/usr/local/etc/gitea/conf/app.ini

Diff the new with the backup to make sure it looks right.

And get it running.

And check the status , just to make sure.

Wrapping up
You're about to update the reverse proxy, so you better have the CNAME record by now.

Update Caddyfile. (v1)

DigitalOcean firewall
Since we're using a jail, we defined a different SSH port that PF will forward to the jail. We need to
allow that port through the DigitalOcean firewall, in the Networking tab.

PF

As usual, test with pfctl -vnf /etc/pf.conf , and then remove vn if it's all good.

Create gitea user

diff /usr/local/etc/gitea/conf/app.ini.bak /usr/local/etc/gitea/conf/app.ini

Check file permissions for /var/log/gitea and /var/db/gitea . You may need to chown -R git:git . If
it doesn't work, also check /usr/local/data/git and ...

service gitea start

gitea.mydomain.tld {
 proxy / 10.101.10.150:3000
}

git_ssh = "40202"

gitea_jail = "10.101.10.150"

rdr pass inet proto tcp from any to any port $git_ssh -> $gitea_jail port 22002

Repeat that command if you want to create additional users (because you turned off web
registrations).

Log in to the web interface
You're ready to use the username and password to log in and start creating repos.

References
Used https://www.ccammack.com/posts/jail-gitea-in-freebsd/ for some help... but it was
incomplete...

Helpful stuff here too: https://docs.gitea.io/en-us/config-cheat-sheet/

su git

gitea admin create-user --username c00ldude --password 1234superpass \
--email username@gmailorwhatever.com --admin -c /usr/local/etc/gitea/conf/app.ini

https://www.ccammack.com/posts/jail-gitea-in-freebsd/
https://docs.gitea.io/en-us/config-cheat-sheet/

More Fun Stuff

Website Jail w/ Git Power-up
Website via git
You created a jail for gitea. Of course you now want to use it to track website changes via git
version control. Every git push is a push into production, and that's cool! Let's roll with it. The
future is now.

Let's pretend you've done some basics. You've got gitea running, and you created a project in
gitea called 'website'. You git cloned it, and you have scp 'd the files from your website jail folder
to your local computer. You copied them into the repo, and you commited your changes, and
you're ready to push your changes, right? Perfect.

Let's get busy on the server...

As root in the host:

Now we need to create these directories in their /usr/local/data , stop the gitea and website jails,
update their fstab files, and restart the jails. Then make sure to set permissions (owned by git, by
readable by anyone).

First, with the gitea jail

exit

Edit fstab

zfs create -o compress=lz4 -o atime=off zroot/data/prod-website

bastille console git_jail

mkdir -p /usr/local/data/prod-website

bastille git_jail stop

/usr/local/data/prod-website /usr/local/bastille/jails/git_jail/root/usr/local/data/prod-website nullfs rw,late 0 0

Before moving along, let's add the git hook.
(This is the magic)

Edit post-receive to include

Now double check you added those files locally and push to remote.
And it worked.

Next, with the website jail

Double check the location of the website. It's at /usr/local/www/mydomain.tld ... now...

Edit fstab

If I pop into the jail and run ll in /usr/local/www , I see that the git user owns the directory now, so it
appears it's complete...

But it's not. Nginx is looking too high. Gotta adjust the nginx conf. It needs to dig in another dir (
.../www/mydomain.tld/mydomain.tld). Maybe I'll decide on a more elegant (less nested) approach

bastille start git_jail

bastille console git_jail

cd /usr/local/data/prod-website && mkdir -p mydomain.tld && chown git:git mydomain.tld

cd /usr/local/data/git/git_username/website.git/hooks

WEBSITE_FOLDER="/usr/local/data/prod-website/mydomain.tld"
git --work-tree=$WEBSITE_FOLDER --git-dir=$GIT_DIR checkout -f master

bastille console website_jail

bastille stop website_jail

/usr/local/data/prod-website/mydomain.tld /usr/local/bastille/jails/website_jail/root/usr/local/www/mydomain.tld
nullfs rw,late 0 0

bastille start website_jail

later. For now, it works and is nice.

Then a final service nginx reload (preceded by nginx -t , if you wanna be extra careful), and we're
good.

Mission Accomplished
That's right. As stated at the top, you can now do development at home, testing on your localhost
webserver, and then commit and push your changes whenever you're happy with them.

More Fun Stuff

IRC!Radio by dsc_
IRC!Radio
IRC!Radio is a radio station for IRC channels. You hang around on IRC, adding YouTube songs to the
bot, listening to it with all your friends. Great fun!

Stack
IRC!Radio aims to be minimalistic/small using:

- Python >= 3.7
- SQLite
- LiquidSoap >= 1.4.3
- Icecast2
- Quart web framework

And all in a FreeBSD jail (in this case).

Command list

- !np - current song
- !tune - upvote song
- !boo - downvote song
- !request - search and queue a song by title or YouTube id
- !dj+ - add a YouTube ID to the radiostream
- !dj- - remove a YouTube ID
- !ban+ - ban a YouTube ID and/or nickname
- !ban- - unban a YouTube ID and/or nickname
- !skip - skips current song
- !listeners - show current amount of listeners
- !queue - show queued up music
- !queue_user - queue a random song by user
- !search - search for a title
- !stats - stats

“

Installation
The following assumes you have a VPS somewhere with root access (duh). It assumes you're using
bastille for the jail manager, and it assumes you have a caddy jail already set up for reverse proxy
and certs.

Before doing anything else, since we're on FreeBSD, create a jail. Notice that this is a thin jail with
no network interface specified, therefore it'll use the bastille0 cloned loopback device for its
network.

In my case, I have a custom .cshrc file to make the terminal nicer looking (and a script to copy it
into place).

The radio user will be doing a bunch of the heavy lifting. It needs its own /home directory.

An icecast user will be needed to run icecast , but it doesn't need its own /home directory.

Requirements
Part I - Everything except for liquidsoap , basically
Into the jail, as root:

First, might as well get onto the latest package repo.

Do a couple rounds of package installing. First, basics. Then specifics.

bastille create radio_jail 13.0-RELEASE 10.101.10.180

/usr/local/scripts/custom_cshrc.sh radio_jail

bastille cmd radio_jail pw adduser -n radio -m -d /home/radio -s /usr/local/bin/bash -c "radio user"

bastille cmd radio_jail pw adduser -n icecast -G wheel -d /nonexistent -s /usr/sbin/nologin -c "icecast"

bastille console radio_jail

mkdir -p /usr/local/etc/pkg/repos

echo 'FreeBSD: { url: 'pkg+http://pkg.FreeBSD.org/\$\{ABI\}/latest', enabled: yes }' >
/usr/local/etc/pkg/repos/FreeBSD.conf

And because there is no liquidsoap in ports:

Part II - Use opam to install liquidsoap

Inside the jail, as the radio user, the majority of the rest will happen. Might as well get to the
/home directory.

Follow the instructions to make sure .profile is properly sourced.

And paste:

The compiler in the package repo is too old for what we need.

And the install command that won't work without the env vars (whether included in advance or
part of the command):

pkg install -y bat htop git vim-console tmux

pkg install -y icecast py38-virtualenv libogg nginx ffmpeg sqlite3 py38-sqlite3 gmake bash

pkg install -y ocaml-opam libmad taglib libsamplerate pkgconf gavl fdk-aac

su radio

cd

opam init

vim .bashrc

source /usr/home/radio/.profile

opam switch create 4.12.0

opam install fdkaac gavl

opam depext taglib mad lame vorbis cry samplerate liquidsoap

C_INCLUDE_PATH=$C_INCLUDE_PATH:/usr/local/include
CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:usr/local/include LIBRARY_PATH=$LIBRARY_PATH:/usr/local/lib
opam install taglib mad lame vorbis cry samplerate ffmpeg liquidsoap

Clone and Setup
Still as radio user, still from from ~ :

The magic commands that will need to be run more than once (here, and then farther down, at the
end):

Adjust settings
Now that all the building blocks are in place:

Look at settings.py and configure it to your liking:

Change host listening address at the top to internal IP given to the jail, 10.101.10.180
Change timezone to America/New_York or whatever
Change irc_host from localhost to something like irc.oftc.net or irc.libera.chat or whatever
If you change irc_ssl to True , change the irc_port accordingly.
Change irc_nick , irc_channels , irc_realname , maybe irc_command_prefix
Change icecast2_hostname to your hostname , i.e, radio.example.com
Change the passwords under icecast2_
Change the liquidsoap_description to whatever

Lastly, edit ircradio/utils.py , and comment out all of liquidsoap_check_symlink() , and just make it pass .

git clone https://git.wownero.com/dsc/ircradio.git

cd ircradio/

virtualenv -p /usr/local/bin/python3.8 venv

source venv/bin/activate

pip install -r requirements.txt

cp settings.py_example settings.py

vim settings.py

Alternatively, you can run the generate command that follows, and then run find / -type f -
name lastfm.liq , and then as root put in a symlink so it will be able to find that file. But you'll
need a thick jail to be able to do this. And you'll need to repeat the three magic virtualenv
commands again.

When you are done, this will generate various initial configs (which we'll have to further edit):

The generate function writes icecast / liquidsoap / nginx configuration files into data/ .

Update configs
First, while still in the radio user's shell:

Then, exit out of radio and back to root . We'll need root shell for this section and the next. And if
needed:

liquidsoap

Where is liquidsoap ? We got that above. That needs to be the path at the top of the data/soap.liq
file. Paste it.

And while in there, comment out the row starting with full . In the final line, change full to radio .
This change will remove the crossfade function unfortunately. Maybe 1.4.4 changed that function.

Then liquidsoap also needs an rc file, rather than a system.d file.

python3.8 run.py generate

which liquidsoap

cd /home/radio/ircradio

vim data/soap.liq

TODO: figure out crossfading, cuz I want it

vim /usr/local/etc/rc.d/liquidsoap

#!/bin/sh

PROVIDE: liquidsoap
REQUIRE: DAEMON
BEFORE: LOGIN
KEYWORD: shutdown

Add the following line to /etc/rc.conf to enable `liquidsoap`.
#

And it needs to be made executable.

#liquidsoap_enable="YES"
#
To specify a non-default script file, set liquidsoap_script
in /etc/rc.conf:
#
#liquidsoap_script="/home/radio/ircradio/data/soap.liq"
#

. /etc/rc.subr

name="liquidsoap"
rcvar=liquidsoap_enable

#update as necessary, the command path
command="/usr/home/radio/.opam/4.12.0/bin/liquidsoap"
command_args="--daemon 1>/dev/null"
#command_args="--daemon --quiet"
extra_commands="reload"

read configuration and set defaults
load_rc_config "$name"
: ${liquidsoap_enable="NO"}
: ${liquidsoap_script="/home/radio/ircradio/data/soap.liq"}
: ${liquidsoap_flags="${liquidsoap_script}"}
: ${liquidsoap_user:=radio}
: ${liquidsoap_group:=radio}

required_files="${liquidsoap_script}"

run_rc_command "$1"

pushd /usr/local/etc/rc.d/

chmod +x liquidsoap

popd

Also, liquidsoap will want to create a pid near the build dir , and the user needs permissions...
(adjust as necessary).

nginx

For data/radio_nginx.conf , there needs to be the following at the very top:

And underneath that, the whole server block needs to be wrapped in an html {} block.

And change the listen port to whatever you'll forward to from caddy , like 8040 , though 80 should
be fine too.

icecast

Get into data/icecast.xml .

First, might as well adjust the location to a fun name and admin to any old email address.

I adjusted <burst-on-connect> to 1 and <hostname> to radio.example.come (the actual address).

The bottom of the file needs to have the user info in the security section, right under changeowner
subsection:

Change the paths to these, since the provided ones are for Linux.

mkdir -p /usr/home/radio/.opam/4.12.0/lib/liquidsoap/var/run/liquidsoap

pushd /usr/home/radio/.opam/4.12.0/lib/liquidsoap/var/run

chown radio:radio liquidsoap/

popd

vim data/radio_nginx.conf

events {}

vim data/icecast.xml

	<changeowner>
 <user>icecast</user>
 <group>icecast</group>
	</changeowner>

When starting the service, there will be an annoying "error" if we don't have this file *rolls eyes*...

One more thing for this. For icecast to work, it needs to be able to do what you tell it, like logging...

Final Tidying Up
Still as root ...

And we can enable the services..

And start them (and ultimately this will hopefully illuminate if any errors were made above).

 <paths>
		<basedir>/usr/local/share/icecast</basedir>
 <logdir>/var/log/icecast/</logdir>
		<webroot>/usr/local/share/icecast/web</webroot>
		<adminroot>/usr/local/share/icecast/admin</adminroot>
 </paths>

touch /etc/mime.types

pushd /var/log

mkdir /var/log/icecast

chown -R icecast:icecast /var/log/icecast

chmod -R 760 /var/log/icecast

popd

cp /home/radio/ircradio/data/icecast.xml /usr/local/etc/

cp /home/radio/ircradio/data/radio_nginx.conf /usr/local/etc/nginx/nginx.conf

sysrc liquidsoap_enable="YES"

sysrc nginx_enable="YES"

sysrc icecast_enable="YES"

Set Up Host & Caddyfile (and cname
record)
Hopefully the host doesn't need anything, actually.

Before getting to caddy , hop into your domain registrar and add a cname for the hostname desired,
in this case radio . It may take a little while for the new record to propogate.

Then hop into the Caddyfile and add a section for radio.domain.tld , and reverse proxy to the jail and
the listen port from the top of nginx.conf .

And then we are ready to finish up.

Start It!
From the jail console, start a new tmux session.

Change user and get to the repo directory.

Run the three magical virtualenv steps.

Run the thing:

service icecast start

service liquidsoap start

service nginx start

tmux

su radio

cd

cd ircradio/

python3.8 run.py webdev

Then hop onto IRC and download a few songs! Then either the music will start playing, or you can
restart liquidsoap with root .

Other
There are html files for the webpage inside ircradio/templates . Perhaps you'd like to adjust the files
to customize it a bit and maybe indicate that you stole this setup from from someone else and it's
really their hard work that made it possible.

Resources
https://git.wownero.com/dsc/ircradio

https://git.wownero.com/dsc/ircradio

More Legwork - Backups

More Legwork - Backups

Backups Overall
We haven't gone into backups yet. Maybe we should. In general, writing a script to dump a
database, tar files, etc, is not rocket science (though it's a bit tedious to set up). The trickiest part
in any of these is getting the backed-up files to a different machine.

Host
We actually haven't done a whole heck of a lot to the host. Certainly, we've got an rc.conf and a
pf.conf . We've also got a script and a cron entry. We'll be adding more scripts (backup scripts)
and more cron entries. And we've potentially got data directories on the host as well, considering
we'll probably cp / tar files into some backup directory first (which we can then ZFS snapshot!)
before then scp 'ing to remote machine.

Bookstack
This one is semi-tricky, but actually not bad. You must use the correct credentials to dump the
database to a file, and you must grab a few additional directories that are resources used by the
database but not actually saved inside it.

Website
If you're using Gitea to populate the website's document root, then perhaps backing up Gitea will
suit your needs. And in that case, you also most likely have a local copy of the git repository
working tree, so you can already repopulate the document root in a pinch.

Whether or not you're using Gitea/ git , it's generally a simple task to tar up the document root
directory and scp it to a remote machine.

Gitea
There are several ways to look at backing this up depending on how you're using it.

Standalone
If you're reliant solely on Gitea, then you should back things up. There are two directories and a
file.

git home
This stores the *.git directories containing the commit history and whatnot. It feels weird to tar
these up when they can easy be cloned by conventional means. Choose your poison.

Database
This category consists of the db itself as well as some accompanying files and directories. The db
contains the website configuration, including users. Backing this up will depend on the type of
database. I used sqlite , which is not authenticated. The process for mariadb and others would be
different, though you can follow the procedure used for BookStack, since that uses mariadb .

{..}/app.ini
These are the runtime parameters.

Mirrors
If you're using Gitea to mirror a website from Github or Gitlab (or wherever), then there isn't much
of a need for a backup because you can just recreate the Gitea repo from the repo you're
mirroring.

If you're using Github (or wherever) to mirror Gitea, then... you still don't have much to worry
about. The reason for this (though I don't know if it applies outside of Github) is that Github does
not allow you to mirror external repos. So if you're using Github to mirror Gitea, you have
accomplished this by adding a post-receive hook to your Gitea repo that pushes the changes
automatically to Github. So in this case too, you can restart the Gitea repo by importing the Github
repo. However, it may make sense to back up your keys, considering you had to provide
authorization for Gitea to push to Github, so there may be an SSH key that you'd want to just put
back into Gitea rather than creating a new key pair and loading the newly created pubkey into
Github.

Bitwarden
There's actually not much to this. You can look at their recommendations here:
https://github.com/dani-garcia/bitwarden_rs/wiki/Backing-up-your-vault which basically come down

https://github.com/dani-garcia/bitwarden_rs/wiki/Backing-up-your-vault

to running sqlite3 db > backup and saving your icons.

Caddy
No backup needed, really. I mean, in its current state, it'd take two seconds to replace. The more
you add to it, the more you maybe want to copy a backup of the Caddyfile somewhere, but that's
about it.

More Legwork - Backups

BookStack Backup
Here's a script for backing up everything you need in the event you want to rebuild the jail and
bring the existing BookStack data to the new jail.

It takes no arguments. You simply set the correct variables inside, and it just works™. Here's how:

1. It checks whether the root backup directory exists. If it doesn't, it creates it.
2. It checks whether the subdirectory (based on the date) exists. If it doesn't, it creates it.
3. It cd 's to where you'll temporarily store the database dump (after making sure it exists).
4. It dumps the database into a file of the name you specify (which isn't important).
5. It cd 's to the subdirectory where the backup files will be saved.
6. It checks whether the dump file already exists (in case you already backed up today).

1. If you didn't already back up today, it moves the db dump there.
2. If you did already back up, it prepends a count to the file name first, as to not

overwrite the previous.
7. Next, it cd 's into the BookStack directory and tar s the remaining files and directories.
8. Lastly, it copies the tar ed file to the backup subdirectory.

Before implementing this script, we need to set up the backup directory.

Now we can create the script to run from the host that will dump the db, tar the add'l resources,
and save them in the directory we just created. From the host:

zfs create -o compress=lz4 -o atime=off zroot/data/backups

zfs create -o compress=lz4 -o atime=off zroot/data/backups/bookstack

cd /usr/local/scripts

vim backup_bookstack.sh

#!/bin/sh

Exit script if error (non-zero return code)
set -e

Variables to be used

jail=bs_jail
jail_dir="/usr/local/bastille/jails/$jail/root"
db=db_bs
DUMP="$db.dmp"
NOW=$(date +"%Y-%m-%d")
bk_root="/usr/local/data/backups/bookstack"
bk_dir="$bk_root/$NOW"
scripts_dir="/usr/local/scripts"
tmp_dmp_dir="${scripts_dir}/tmp"
bs_dir="${jail_dir}/usr/local/www/bookstack"
bs_files="bookstack-files-backup.tar.gz"

mv_it() {
 FILE=$1
 SOURCE_DIR=$2
 COUNT=$3

 if [! -f "$COUNT.${FILE}"]; then
 cd $SOURCE_DIR
 mv ${FILE} ${bk_dir}/$COUNT.${FILE}
 else
 COUNT=`expr $COUNT + 1`
 mv_it $FILE $SOURCE_DIR $COUNT
 fi
}

Create destination root dir and sub dir

if [! -d "${bk_root}"]; then
 mkdir ${bk_root}
fi

if [! -d "${bk_dir}"]; then
 mkdir ${bk_dir}
fi

Prepare to export; dump to tmp dir

cd "${tmp_dmp_dir}"

Within the jail (via bastille), dump MariaDB db to file
(substitue 'secret' w/ the password of the backup user) (w/ no space after the -p)

bastille cmd $jail mysqldump --single-transaction -u backup -psecret $db > $DUMP

Move (and rename) the file from the current dir to the backup dir

COUNT_D=0

cd $bk_dir

if [! -f "${DUMP}"]; then
 cd $tmp_dmp_dir
 mv $DUMP $bk_dir
else
 mv_it $DUMP $tmp_dmp_dir $COUNT_D
fi

Tar the unrecoverable, install-specific files

cd $bs_dir
tar -czf $bs_files .env public/uploads storage/uploads

Move to backup dir

COUNT_F=0

cd $bk_dir

if [! -f "${bs_files}"]; then
 cd $bs_dir
 mv $bs_files $bk_dir
else
 mv_it $bs_files $bs_dir $COUNT_F
fi

Write to log briefly what happened

And it needs to be executable.

Notes:

1. If you named the jail something other than 'bs_jail' then adjust the variable value.
2. Adjust the db name from 'db_bs' to whatever your db's name is.
3. I set bk_root to what we just created ZFS datasets for.
4. This will be saved in /usr/local/scripts . Feel free to save it elsewhere.
5. Create a /tmp inside /usr/local/scripts (or your chosen dir), to be used temporarily by the

script.
6. If your BookStack installation isn't in /usr/local/www/bookstack , then adjust accordingly.
7. This is just the name of the resources that get tar 'ed. Name it whatever you want.

Also:

From the host, we log into mysql (mariadb).

Then we create the user.

Now you can run this and see the results. You may want to run a cron job (though bear in mind
that a single cron job to back up BookStack will just grow over time, so you should also create a
script to only keep the newest so many and purge the rest).

echo "$NOW - Dumped $db, tar'ed files, saved to $bk_dir" >> ${scripts_dir}/Scripts.log

exit 0

chmod 755 backup_bookstack.sh

We're using decent hygiene here. The user that is performing the db dump only has access
to perform that one function (pretty much). You must create it and give it that privilege.
Like so...

bastille cmd bs_jail mysql -u root -p

CREATE USER 'backup'@'localhost' IDENTIFIED BY 'secret';	# where backup is user and secret is password
GRANT SELECT, SHOW VIEW, RELOAD, REPLICATION CLIENT, EVENT, TRIGGER ON *.* TO 'backup'@'localhost';
FLUSH PRIVILEGES;
exit;

More Legwork - Upgrading
Versions

More Legwork - Upgrading Versions

Upgrade From 12.1- to 12.2-
RELEASE
Did we get a choice to include /usr/src when setting up this droplet? I don't remember, but I don't
think so. Well, let's just ignore that for the moment and proceed with the upgrade process.

Pro Tips
1. Before proceeding - even though nothing will go wrong, right? - stop the droplet and take

a snapshot.
2. You did the snapshot? Maybe you want to "resize" while you're at it. With 1 CPU and 2gb

of RAM, this'll be slow!
3. If you're working with a $5/mo droplet, plan on this taking 1-2 hours... or more.
4. Consider tmux or similar.

Such Quick! Very Upgrade!

Not so fast!
This is a DO droplet. Maybe your droplet has FreeBSD source on it, but mine doesn't. Let's get it.

And then we must extract it (feel free to pipe stdout to /dev/null or something).

freebsd-update fetch

freebsd-update install

freebsd-update upgrade -r 12.2-RELEASE

fetch ftp://ftp.freebsd.org/pub/FreeBSD/releases/amd64/12.1-RELEASE/src.txz

tar -xzvf src.txz -C /

Start over!

Success! Reboot!

Not done! Upgrade userland!

Done!
But are you, really?
A tale of hurried-ness.
I started the process at 11pm. I went to bed a bit after midnight, and I let it just do its thing. When
I woke up, I was presented with a few questions, and I skipped through them too quickly. One of
them was to the effect of "there are changes to /etc/ssh/sshd_config that cannot be automatically
merged. Please edit it vi."

I stared at the message for a few seconds, thought about how I needed to walk and feed the dog,
and decided I would deal with it later. I just saved it with the diffs (you know, >>>>>>>>>>>>>
and <<<<<<<<<<<<) still in it. I answered 'yes' to the remaining questions of "does this look
right?" and it proceeded to finish the system upgrade.

I then handled my dog duties and came back to finish up. I rebooted, and then upgraded
userland. I had forgotten all about the sshd_config deal. Well, after the second reboot (first one

freebsd-update fetch

freebsd-update install

freebsd-update upgrade -r 12.2-RELEASE

freebsd-update install

shutdown -r now

freebsd-update install

shutdown -r now

after kernel/system, and second one after userland), I was rejected at port 22. Ah - no big deal -
I'll just access the console using the DO web interface. Just need to enter username and
password. Wait. I didn't set up a user, and I didn't set up a root password. So that won't work!

I couldn't figure out how to proceed, so I popped into #freebsd on Freenode, and they were like
"can't you boot into single user mode?" Hm. Let's see.

You can boot into single user mode one of two ways. First, you can just tell the system to do that
on next boot with nextboot -o "-s" -k kernel , but I had no shell. The other way is to power cycle the
system from the DO web interface, and then open up the console and choose option '2' to boot into
single user mode.

Perfect, I have no idea what I need to fix, but at least I'm in. Let's check .ssh/authorized_keys . Yeah,
looks fine. Hmm. Wait a minute. Yes, I remember now. I didn't bother to do anything about the
sshd_config diffs that I was bugged about first thing in the morning. Wow, I'm lucky I remembered.
Okay, so I'll just open up vi and at least comment out the offending rows.

Uh, no, I won't. It's mounted as read-only. But wait, yes I can. I just need to mount it as read-
write. I mounted the root file system like so: mount -u -o rw / , but others later said mount -u / is
enough (see reference). Anyhoo, I was then able to fix up sshd_config and service sshd restart which
worked great. Of course, I was in single user mode, so I had to reboot. A minute later and I was
able to ssh into the server again. Sweet. Finally done.

Still Not Done!
Well, maybe it is done. But now is a good time to review the changes. Also, do you have any
jails? I do, and they have not been upgraded. If you use a jail manager to create and manage your
jails, you should also use it to upgrade them. In the Bastille docs (below, in References), they
mention how to upgrade individual jails or simply every jail at once by upgrading the release.

References
Release notes: https://www.freebsd.org/releases/12.2R/relnotes.html#upgrade

Updates per the handbook: https://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/updating-upgrading-freebsdupdate.html

Info reworded from a... Linux... website: https://www.fosslinux.com/44135/freebsd-12-2-review-
what-you-need-to-know-and-how-to-upgrade.htm

https://www.freebsd.org/releases/12.2R/relnotes.html#upgrade
https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/updating-upgrading-freebsdupdate.html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/updating-upgrading-freebsdupdate.html
https://www.fosslinux.com/44135/freebsd-12-2-review-what-you-need-to-know-and-how-to-upgrade.htm
https://www.fosslinux.com/44135/freebsd-12-2-review-what-you-need-to-know-and-how-to-upgrade.htm

Downloading source: https://www.jan0sch.de/post/install-freebsd-sources/

Change mount in place: https://unix.stackexchange.com/questions/65523/unable-to-write-to-file-
on-freebsd-read-only-filesystem

BastilleBSD jail upgrades: https://github.com/BastilleBSD/bastille

https://www.jan0sch.de/post/install-freebsd-sources/
https://unix.stackexchange.com/questions/65523/unable-to-write-to-file-on-freebsd-read-only-filesystem
https://unix.stackexchange.com/questions/65523/unable-to-write-to-file-on-freebsd-read-only-filesystem
https://github.com/BastilleBSD/bastille

