
Jail Preparation/Setup

Filesystem
We'll want a dataset to store data that will exist outside the jails. Yay for ZFS (for reasons I'm
glossing over...).

(Did I have to create /usr/local/data before doing the above? I don't recall... but I'm pretty sure no.)

We expect to have a BookStack jail, which has a database.

And we can have a dataset for the BookStack db, specifically.

We'll get to this later, but now (later) we can nullfs -mount the dataset inside the jail (in its fstab)
like so:

And in case you jump ahead, you'll also need to know that mysql needs to own the directory.

Speaking of jumping ahead... I had issues when using a newer version of MariaDB a few months
later. The MariaDB setup might need more to get it working. It may have to do with changes to
Mysql.

Jail Management

zfs create -o compress=lz4 -o atime=off -o mountpoint=/usr/local/data zroot/data

zfs create -o compress=lz4 -o atime=off zroot/data/dbs

zfs create -o compress=lz4 -o atime=off zroot/data/dbs/bookstack

Device Mountpoint FStype Options Dump Pass#
/usr/local/data/dbs/bookstack /usr/local/bastille/jails/bs_jail/root/var/db/mysql nullfs rw,late 0 0

cd /usr/local/data/dbs/
chown -R 88:88 bookstack/

It's tempting to manage jails by hand, but I'll leave that exercise to my local server. We'll use this
script-based tool instead.

We want the Bastille jails to start up upon system reboot, so we add it to the rc.conf file.

And we can hop right into the Bastille configuration that defines the jails' default parameters.

The notable changes are:

Something of note is it uses a particular loopback device that must be created (added to rc.conf) .

And since the jails are on a separate loopback network and need to be NAT'd, we probably need
this:

And then the cloned interface can be brought up.

We would then update pf.conf accordingly to allow jail traffic if the example we started with didn't
already have this.

pkg install bastille

sysrc bastille_enable=YES

vim /usr/local/etc/bastille/bastille.conf

bastille_zfs_enable="YES"
bastille_zfs_zpool="zroot"

bastille_jail_addr="10.101.10.10" # not sure if this is even used or makes sense

sysrc cloned_interfaces+=lo1

sysrc ifconfig_lo1_name="bastille0"

sysrc gateway_enable="YES"

service netif cloneup

table <jails> persist

{...}

Base Jail
(For creating quickly update-able thin jails later)
It's pretty simple to create the base jail. This will download a fresh base install, basically.

You'll want to occasionally update this with:

We should now be ready to create jails.

(On a 25G instance, ZFS list currently reflects there is 16.8G remaining space.)

Initial Jail Creation
More foreshadowing!

Usage: bastille create [option] name release ip [interface].

Options - Empty, Thick, VNET (none of these)

Interface - vtnet (no!), bastille0 (yes, but implied)

nat on $ext_if from <jails> to any -> $ext_if_ip

static port forwarding for sending http/https to [reverse proxy] jail
rdr pass inet proto tcp from any to any port {80, 443} -> 10.17.89.45

When searching online, you may find that NAT rules end with -> ($ext_if) , but that will
include all aliases, which will make the NAT-ting most likely not behave as intended. You
want to NAT on the external IP (-> $ext_if_ip).

bastille bootstrap 12.1-RELEASE

bastille bootstrap 12.1-RELEASE update

bastille create caddy_jail 12.1-RELEASE 10.101.10.100

bastille create bs_jail 12.1-RELEASE 10.101.10.110

bastille create bw_jail 12.1-RELEASE 10.101.10.120

And after creating five thin jails, the remaining space is still 16.8G. Yay, ZFS, again!

Quick quality of life improvement in the
jails
Let's create a .cshrc for copying into the jails. It's the same as the regular one, but it uses different
prompt colors.

bastille create thelounge_jail 12.1-RELEASE 10.101.10.130

bastille create website_jail 12.1-RELEASE 10.101.10.140

$FreeBSD: releng/12.1/bin/csh/dot.cshrc 338374 2018-08-29 16:59:19Z brd $
#
.cshrc - csh resource script, read at beginning of execution by each shell
#
see also csh(1), environ(7).
more examples available at /usr/share/examples/csh/
#

alias h history 25
alias j jobs -l
alias la ls -aF
alias lf ls -FA
alias ll ls -lA

A righteous umask
umask 22

set path = (/sbin /bin /usr/sbin /usr/bin /usr/local/sbin /usr/local/bin $HOME/bin)

setenv EDITOR vi
setenv PAGER less
setenv BLOCKSIZE K

if ($?prompt) then
 # An interactive shell -- set some stuff up

 # colors for prompt (0 for regular and 1 for bold, or use %B%b for bold)
 set red="%{\033[0;31m%}"
 set green="%{\033[0;32m%}"
 set yellow="%{\033[0;33m%}"
 set blue="%{\033[0;34m%}"
 set magenta="%{\033[0;35m%}"
 set cyan="%{\033[0;36m%}"
 set white="%{\033[0;37m%}"
 set end="%{\033[0m%}" # This is needed at the end... :(

 # prompt vars
 set name = "${red}%B%n%b${end}"
 set host = "${red}%m${end}"
 set dir = "${cyan}%~${end}"

 set prompt = "[${name}@${host}:${dir}]%# "

 #set prompt = "%N@%m:%~ %# "
 set promptchars = "%#"

 set complete = enhance

 set filec
 set history = 1000
 set savehist = (1000 merge)
 set autolist = ambiguous
 # Use history to aid expansion
 set autoexpand
 set autorehash
 set mail = (/var/mail/$USER)
 if ($?tcsh) then
 bindkey "^W" backward-delete-word
 bindkey -k up history-search-backward
 bindkey -k down history-search-forward
 endif

 # Clean up...
 unset red green yellow blue magenta cyan white end
 unset name host dir

Then mv each jail's .cshrc as .cshrc.orig , and then cp the .cshrc.jail as each jails's new
/root/root/.cshrc . See below for a script to do this quickly and easily.

Other Bits
It may be a good time to reboot the server. You've made several changes to the system, and you'll
want to make sure they stuck and are working correctly.

Changes to /etc/pf.conf require pfctl -f /etc/pf.conf **. Changes to /etc/rc.conf require... something.
Changing the .cshrc requires sourcing it or logging in fresh. The jails need to be started.
Rebooting will do all this, including starting the jails.

** Just make sure you at least have already run pfctl -vnf /etc/pf.conf to make sure the config works.

Common Initial Jail Setup
The beginning steps are mostly the same across the jails. Before jumping in, if you haven't
already, remember to mv the jail's .cshrc as .cshrc.orig , and then cp the host's .cshrc.jail as the
jails's new /root/root/.cshrc .

In fact, here's a script (that magically worked perfectly the first time I ran it), that I just saved in
/usr/local/scripts .

endif

color in autocomplete
set color
color in ls
alias ls ls -G

LS colors, made with https://geoff.greer.fm/lscolors/
setenv LSCOLORS gxfxcxdxbxegedabagacad

#!/bin/sh

Copies custom .cshrc from /root/.cshrc.jail in place of the
jail's default .cshrc, and renames the default as .cshrc.orig.

Exit script if error (non-zero return code)
set -e

check for a single arg (the name of the jail)
if ["$#" -ne 1]; then
 echo "Usage: $0 JAIL_NAME" >&2
 exit 1
fi

Variables to be used
jail_name="$1"
jails_dir="/usr/local/bastille/jails"
jail_dir="${jails_dir}/${jail_name}/root/root"

check that the directory exists
if [! -d "${jail_dir}"]; then
	echo "Directory ${jail_dir} doesn't exist." >&2
	exit 1
fi

check that the original .cshrc exists
if [! -f "${jail_dir}/.cshrc"]; then
	echo "File ${jail_dir}/.cshrc doesn't exist." >&2
	exit 1
fi

check that the custom .cshrc exists
if [! -f "/root/.cshrc.jail"]; then
	echo "Custom .cshrc.jail in /root doesn't exist." >&2
	exit 1
fi

mv ${jail_dir}/.cshrc ${jail_dir}/.cshrc.orig

cp /root/.cshrc.jail ${jail_dir}/.cshrc

Write to log briefly what happened
echo "Added custom .cshrc to ${jail_name}."

exit 0

Don't forget to chmod +x it. Then you just run it with /usr/local/scripts/custom_cshrc.sh <jail_name> .

Misc
Another initial jail setup task may be to set up the timezone. You can (unlikely, but possible) have
weird internet problems if your time is off. The host time being right is the most important, but feel
free to check the current date and time with the date command. If you need to update things, run
tzsetup and choose your timezone.

Also, you may update the jail. If you just created or updated your base jail, or if this is a thin jail,
then there is actually no reason for this. But if you do need/want to do an update...

So we must first edit .../jails/$jail/jail.conf to change securelevel from 2 to 0 , then restart the jail.

Then the updating can happen.

Then we edit .../jails/$jail/jail.conf again to change securelevel from 0 to 2 , then restart the jail
again.

And now you have a current, clean slate upon which to build.

Resources
The Bastille docs are great. https://bastillebsd.org/

Updates cannot be installed when the system securelevel (jail.conf setting) is greater than
zero.

bastille cmd $jail freebsd-update fetch install
bastille pkg $jail update
bastille pkg $jail upgrade -y

Revision #3
Created 4 August 2020 07:22:15 by scoob
Updated 24 September 2020 06:23:02 by scoob

