
Website Jail
Before this, I can't think of a time where I edited or wrote html. I can remember creating a basic
index.php as a test for nginx and/or apache a couple times while tinkering with Nextcloud, but that
might be it.

Accordingly, this will be a very basic start of a very simple website. I maybe look forward to doing
"cool" complicated stuff in the future, but for now we'll have close to nothing on it. I'm creating the
web page because I figure that I might as well have a landing page for the domain itself, but I'm
more interested in setting up the reverse proxy work for the subdomains.

To set the expectations properly, the goal is to create an html file that renders in a browser by
visiting mydomain.tld . We'll not be worrying about TLS/https (because caddy will eventually do that
for us). We'll simply install a web server, create the html file, port forward (rdr) in PF to the jail,
and visit in the browser. Someone who's done this a couple times - even if they're documenting it -
might be be done in under two minutes. It took me more than two minutes.

Prep
Run the custom_cshrc.sh you created in /usr/local/scripts to put a custom .cshrc file in the jail.
Remember, the script just takes the jail name as its only argument.

If desired, adjust the date and time with tzsetup or bastille cmd website_jail tzsetup .

Web Server
We'll keep it simple and consistent (i.e., BookStack is served by nginx), so we'll install nginx .

And then we'll enable it and start it.

bastille pkg website_jail install -y nginx vim-console

bastille sysrc website_jail nginx_enable="YES"

bastille service website_jail nginx start

We'll configure it in a moment.

Internet Content
That sure is a fancy title for a bare html file.

Let's just hop into the jail console for a few minutes.

And we'll head to the usual FreeBSD spot, create a website directory, and then file.

And we will create our initial homepage.

Configuration
Now we can create our configuration in nginx so it knows how to listen and what content to serve.

bastille console website_jail

cd /usr/local/www

mkdir mydomain.tld && cd mydomain.tld

vim index.html

<!DOCTYPE html>
<html>
<body>

<h1>We Did It!</h1>

<p>How exciting.</p>

<p>Be sure to check out all the great related services. Links coming soon...</p>

</body>
</html>

vim /usr/local/etc/nginx/nginx.conf

In theory, all we have to do is change server_name localhost to server_name mydomain.tld
www.mydomain.tld and change root /usr/local/www/nginx to root /usr/local/www/mydomain.tld . With any
luck, we can reload nginx and be ready to test (almost).

Before moving forward, exit out of the jail console.

First we test the config (even though the test is built into the reload).

If successful, we perform the reload.

Testing It Out
You'll need the jail's IP for this, which you can get from bastille list .

Then there needs to be a redirect rule in PF , which is basically port forwarding. There's an
example already in /etc/pf.conf , so it just needs to be uncommented, and updated with the website
jail's internal IP.

And it needs to be tested with:

Hiccup
NameCheap.com provides a default CNAME record that redirects my internet traffic to their
"parking page" and I hadn't deleted that yet, so I had to wait on it to die.

Visiting the IP address does successfully display the webpage, but it would have been nice to see
DNS do what it's supposed to too. Of course, it worked via hostname eventually.

Last Step

bastille cmd website_jail nginx -t

bastille service website_jail nginx reload

the macro
website_ip = "10.101.10.140"

the port forward
rdr pass inet proto tcp from any to any port {80, 443} -> $website_ip

pfctl -vnf /etc/pf.conf

Remove those rules from pf and force reload pf . We will be using https in no time flat after the
next jail is up.

Revision #4
Created 5 August 2020 04:08:02 by scoob
Updated 24 September 2020 06:26:12 by scoob

